
www.manaraa.com

Multi-Item Supply Chain and 
Revenue Management Problems

JOERN MEISSNER

Submitted in partial fu lfillm ent of the 

requirement^ for the degree 

of Doctor of Philosophy 

under the Executive Committee of the 

Graduate School of Arts and Sciences

Columbia University 

2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

UMI Number: 3159748

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3159748 

Copyright 2005 by ProQuest Information and Learning Company. 

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 
300 North Zeeb Road 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

© 2 00 4  

JOERN MEISSNER 

All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

ABSTRACT 

Multi-Item Supply Chain and 

Revenue Management Problems 

JOERN MEISSNER

The areas of Revenue Management and Supply Chain Management represent two funda­

mental pillars for the management of industries that procure and distribute consumer 

products. The former is concerned w ith the management of the demand processes and 

the development of methodologies and systems required to support this management 

function. The area of Supply Chain Management is concerned w ith the the design of 

a supply process to match a given demand pattern as efficiently as possible. It may 

therefore be viewed as the complement of the Revenue Management area.

Operations management papers have demonstrated that the operational environ­

ment and associated cost structures may have a fundamental impact on the equilibrium 

behavior in  the industry, in general, and the resulting price levels in particular. Little 

remains known, however, about how prices should be set in a competitive environment, 

in  the simultaneous presence of two other major complications:

(i) time dependent demand functions and cost parameters, and

(ii) scale economies in  the operational costs

Conversely, traditional inventory and procurement planning models assume that 

the demand processes for the finished goods are exogenously given, when, in  reality, 

these demand processes can be managed by appropriate price choices, inter alia. It is of 

critical importance to understand how effective replenishment strategies are affected 

by pricing decisions and how replenishment strategies and pricing decisions are to be 

integrated effectively.

This dissertation focuses on the following four areas of complicating factors affect­

ing the union of Supply Chain Management and Revenue Management:
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(A) Pricing Decisions. Here we distinguish between two types of settings. In the first 

case, the firm  operates as a monopolist or in  an environment of imperfect compe­

tition, w ith the competitors’ prices (temporarily) fixed. In the second case, prices 

need to be determined in  an environment of imperfect, oligopolistic competition.

(B) Time-dependent demand functions and cost structures.

(C) Economies o f scale in the operational cost. These arise, for example, from fixed 

cost components in  the procurement processes, i.e. production and distribution 

setup costs.

(D) Capacity Limitations, i.e. l im its on how many units can be produced in  any given 

period or, in the aggregate, over the complete planning horizon. Such capac­

ity  lim its often create interdependencies between different products sharing the 

same production or distribution equipment.
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Chapter 1

Introduction

The areas of Revenue Management and Supply Chain Management represent two funda­

mental pillars for the management of industries that procure and distribute consumer 

products. The former is concerned with the management of the demand processes and 

the development of methodologies and systems required to support this management 

function. The area of Supply Chain Management is concerned w ith the the design of 

a supply process to match a given demand pattern as efficiently as possible. It may 

therefore be viewed as the complement of the Revenue Management area.

While many challenges remain in  the development of these two areas, by them­

selves, there is an increasing recognition of the importance to integrate the two areas 

w ith the help of models which simultaneously manage the supply and demand pro­

cesses. The integrated area is often referred to as Enterprise Profit Optimization; its 

state-of-the-art is still in  its infancy.

Determining the ‘right’ price to charge for a product is a complex task. A volumi­

nous literature in  economics and marketing has been devoted to models which pre-

1
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scribe how prices should be set in  industries in which a lim ited number of competing 

firms offer similar products, which may therefore be viewed as substitutes. These pa­

pers typically model the interaction among competitors as a noncooperative game, see 

V ive s  (2000) and T ir o le  (1988) for survey texts.

More recently, operations management papers have demonstrated that the opera­

tional environment and associated cost structures may have a fundamental impact on 

the equilibrium behavior in  the industry, in  general, and the resulting price levels in  par­

ticular. See Ca c h o n  (2003) for a recent survey. Little remains known, however, about 

how prices should be set in a competitive environment, in the simultaneous presence 

of two other major complications:

(i) time dependent demand functions and cost parameters, and

(ii) scale economies in the operational costs

Conversely, traditional inventory and procurement planning models assume that 

the demand processes for the finished goods are exogenously given, when, in  reality, 

these demand processes can be managed by appropriate price choices, inter alia. It is of 

critical importance to understand how effective replenishment strategies are affected 

by pricing decisions and how replenishment strategies and pricing decisions are to be 

integrated effectively.

This dissertation focuses on the following four areas of complicating factors affect­

ing the union of Supply Chain Management and Revenue Management:

(A) Pricing Decisions. Here we distinguish between two types of settings. In the first 

case, the firm  operates as a monopolist or in  an environment o f imperfect compe­
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tition, w ith the competitors’ prices (temporarily) fixed. In the second case, prices 

need to be determined in  an environment of imperfect, oligopolistic competition 

in  which the firm ’s demand depends not only on its own price choices but equally 

on those made by each of the firm ’s competitors.

(B) Time-dependent demand functions and cost structures.

(C) Economies o f scale in the operational cost. These arise, for example, from fixed 

cost components in the procurement processes, i.e. production and distribution 

setup costs.

(D) Capacity Limitations, i.e. lim its on how many units can be produced in  any given 

period or, in the aggregate, over the complete planning horizon. Such capac­

ity  lim its often create interdependencies between different products sharing the 

same production or distribution equipment.

This dissertation consists of an analysis four finite horizon planning models. In 

each, the planning horizon is partitioned into a finite number of periods, w ith decisions 

restricted to the the beginning of these periods. Each of the four models integrates sev­

eral of the complicating factors (A)-(D), as explained below. Each corresponds w ith one 

of chapter 2-5 of this dissertation, w ith the following titles:

Chapter 2: Progressive Interval Heuristics for Multi-Item Capacitated Lot-Sizing Prob­

lems

Chapter 3: Probabilistic Analysis of Progressive Interval Heuristics fo r Multi-Item Ca­

pacitated Lot-Sizing Problems

Chapter 4: Dynamic Pricing Strategies for Multi-Product Revenue Management Prob­
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lems

Chapter 5: Price Competition under Time-Varying Demands and Dynamic Lot Sizing 

Costs

Chapters 2 and 3 correspond w ith Fe d e r g r u e n , Meissner , and T zu r  (2002) and 

Fede r g r u e n  and Meissner  (2004a), respectively. They consider a multi-item planning 

model in  which the time series of demands for each of the items under consideration, 

is given exogenously. The model integrates complicating factors (B)-(D), above. While 

the model, itself, has been addressed since the seventies, in  a voluminous literature, 

we develop the first class of heuristics which can be designed to be simultaneously 

polynomially bounded and asymptotically optimal as T, the number of periods in  the 

planning horizon tends to infinity. The heuristics can also be designed to generate an 

e-optimal solution for any e > 0. The properties are obtained in  the firs t paper, as 

worst case guarantees, merely assuming that some of the model parameters are uni­

form ly bounded from above and below. For example, we assume that the demand and 

capacity values are uniform ly bounded from above. The second paper relaxes this as­

sumption and establishes that performance guarantees hold, with probability one, i f  the 

periods’ demand and capacity values are guaranteed as independent realizations from 

an arbitrary (common) multivariate distribution, possibly w ith unbounded support. To 

our knowledge, this paper represents the first probabilistic analysis of heuristics in  en­

tire lo t sizing literature. The first paper also reports on an extensive numerical study 

demonstrating the practical importance of the proposed class of heuristics.

Chapter 4 corresponds w ith Mag laras  and Meissner  (2004) and addresses a plan­

ning model in which all demand must be satisfied from inventory that is available at the
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beginning of the planning horizon. In other words, the model addresses settings where 

inventory can not be replenished, so that the complicating factory (C) is irrelevant in 

this setting. The model succeeds in  integrating the factors (A) and (D). More specifically, 

the model assumes that that in  each period the demand rate for each of the items can 

be adjusted by selecting price levels for all n  items. While each item's demand rate, 

in  any given period, is given by a demand function of the complete price vector which 

prevails in  this period, these demand functions are assumed to be time-homogenous. 

However, the generalization to the case of time-dependent demand functions is rather 

simple, thus enabling the integration of the factors (A), (B) and (D). As such, the model 

represents an important generalization and extension to the classical papers by G a l - 

lego  and v a n  Ry z i n  (1994, 1997). The model is shown to be applicable, w ith minor 

changes, to a setting where the price levels are determined, upfont, but the firm  has 

the discretion to accept or reject individual product requests.

Finally, the fifth  and last chapter corresponds w ith Fed e r g r u e n  and Meissner  

(2004b) and addresses a competitive pricing model for an industry in which each of 

N  competing firms sell a distinct item or product brand. The different items or brands 

are (close) substitutes. This model integrates the complicating factors (A)-(C), i.e. it 

succeeds in  establishing the simultaneous incorporation of the complicating factors (B) 

and (C) into an oligopoly model w ith price- or quantity competition. Prior work has 

addressed only one of the factors (B) or (C) in  the context of competitive pricing (factor 

(A)).

For example, Be r n s te in  and Federg ruen  (2003) address a setting where each firm  

incurs fixed as well as variable procurement costs along with (linear) inventory carrying
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costs. However, the model assumes an infinite horizon setting with time-invariant de­

mand functions and cost parameters. Here the long-run average operational costs are 

given by the simple closed-form Economic Order Quantity (EOQ) cost function, i.e. the 

costs are given by the sum of a term that is proportional w ith the demand value itself 

and one that is proportional w ith the square root of the demand value, thus reflect­

ing scale economies. C achon and H a rk e r  (2002) similarly consider, for an industry 

w ith two firms, a setting with a single  set of time-invariant demand functions and 

w ith a closed form cost function given by a concave power function of the demand 

volume, (possibly in  conjunction w ith a linear cost component), once again to reflect 

scale economies. Other than the EOQ-cost model above, the authors show that their 

cost structure arises in  a specific service competition model.

At the same time, a stream of marketing papers address competitive pricing prob­

lems under time-dependent demand functions, however w ith simple linear cost func­

tions, and under the assumption that each period’s demand is procured in  the same pe­

riod, i.e. no inventories are carried. Perakis and Sood (2003, 2004) and K ach an i, Per- 

akis and Simon (2004) also address competitive pricing problems under time-varying 

demand functions. Since each firm  starts the planning horizon w ith a known inventory 

and inventories can not be replenished at any time during the horizon, these models 

consider no replenishment costs.

While the demand processes in chapter 2, 3 and 5 are deterministic, the fourth 

chapter represents them as homogeneous Poisson processes.
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Chapter 2

Progressive Interval Heuristics for 

Multi-Item Capacitated Lot-Sizing 

Problems

2.1 Introduction

This chapter addresses capacitated dynamic lot-sizing models. We consider a family 

of N  items which are produced in the same facility or replenished by the same outside 

supplier. Demands are specified for each item and each period of a given horizon o f T 

periods. If  in a given period an order is placed for some or all of the items, set-up costs 

are incurred. The aggregate order size is constrained by a capacity lim it. The objective 

is to find a lot-sizing strategy that satisfies the demands for all items over the entire 

horizon without backlogging, and which minimizes the sum of inventory carrying, fixed

7
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and variable order costs. A ll demands, cost parameters and capacity lim its may be time- 

dependent, reflecting for example, general time-series of forecasts, customer orders, 

seasonal fluctuations of the cost parameters, or changes in  the capacity due to new 

acquisitions or scheduled maintenance.

In the basic model, the setup cost for an order in any given period only depends on 

the period index but not on the composition of the order. This assumption is satisfied 

in  many, i f  not most practical applications, e.g. when the setup cost represents the 

fixed cost o f dispatching a truck or barge or that of initiating a production run in  a 

batch production facility. We refer to this basic case as the Joint Setup cost (JS) model. 

We extend the model to allow for item-dependent setup costs in  addition (or in  lieu 

of) the jo in t setup costs and refer to this generalized model as the Joint and Item- 

dependent Setup cost (JlS)-model.

This capacitated dynamic lot-sizing model is one of the most frequently used deter­

ministic inventory planning models. It needs to be solved repeatedly for each level of 

a Material Requirements Planning (MRP) or Distribution Requirements Planning (DRP) 

system w ith  the orders resulting from the capacitated lot-sizing problem(s) at a given 

level being used as the demand input parameters for the lot-sizing problem to be solved 

at the next level. The model represents the fundamental challenge o f capacity require­

ments planning while assessing tradeoffs between the costs of holding inventories and 

the potential of exploiting economies of scale in  the procurement costs.

Based on a variety of applications for the BASF and Procter & Gamble corpora­

tions as well as a production-distribution problem for the so-called PAMIPS (1995) and 

MEMIPS (1997) projects, Be l v a u x  and Wolsey  (2000, 2001) have developed a prototype
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optim ization system for a class of capacitated multi-item lot-sizing problems which in ­

clude the (JlS)-model. The system called bc-prod uses the extended modelling and opti­

mization library of XPRESS as its engine but allows for simplified problem specification 

and generates various cutting plane constraints specific to the structure o f lot-sizing 

problems. Bix b y  (2001) in  reviewing the progress and future challenges in  CPLEX’s 

mixed integer programming capabilities emphasizes the importance o f supply chain 

management models and within this area, the class of capacitated multi-item lot-sizing 

problems as being of prime importance and awaiting algorithmic improvements.

The general model is very complex. Fl o r ia n  e t  a l . (1980) have in  fact shown that 

even the single-item case (N  = 1) is NP-complete, as opposed to the uncapacitated 

version which, for a planning horizon of T periods, is solvable in  O(TlogT) time, see 

Fed e r g r u e n  and T zu r  (1991), Wag elm an s  e t  a l . (1992), Ag g arw a l  and Pa r k  (1993), 

and in  0 (T) time under some m ild assumptions on the data. The difficulty arises in 

part because under capacity restrictions, it  may no longer be optimal to place an or­

der at the last possible time; in  other words, it  is not possible to confine oneself to 

so called zero-inventory ordering policies. Polynomial time algorithms have been de­

veloped in the single-item case, but these tend to be time-consuming and restricted to 

special parameter settings only, see Fl o r ia n  and Kl e in  (1971), Bit r a n  and Yanasse  

(1982), Ch u n g  and Lin  (1988) and V a n  H oesel and Wag elm a n s  (1996). Recently, Va n  

H oesel and Wa g elm a n s  (2001) (and Ga v is h  and Jo h n s o n  (1990) for a more restricted 

version of the model) developed a fu lly  polynomial approximation scheme for the gen­

eral single-item model, i.e. an algorithm which generates an e-optimal solution for any 

e > 0, in  an amount of time which is polynomial in the problem size as well as
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When several items are involved (N  > 2), no efficient solution methods are known, 

w ith the exception of An il y  and T zu r  (2004a)’s dynamic programming algorithm for 

the case of constant capacities, which is of polynomial complexity when the number 

of items N  is fixed. (This paper also deals w ith the case where multiple capacitated 

batches may be ordered in each period. An il y  and T zu r  (2004b) develop an exponen­

tia l search algorithm for the same problem.) It is for this reason that even the more 

advanced Manufacturing Resource Planning systems (MRPII) start w ith the determina­

tion of system-wide order releases without consideration of capacity constraints, i.e. 

on the basis of the solution (for each stage or item) of the uncapacitated single item 

dynamic lo t sizing model. It is only in  the last phase of the planning process that 

the elimination of capacity conflicts is attempted by heuristic adaptations of the basic 

schedules.

Fed e r g r u e n  and T zu r  (1994a) have demonstrated for single-item uncapacitated 

dynamic lot-sizing models that optimal or close-to-optimal in itia l decisions can be 

made by truncating the horizon after a relatively small number of periods. A fore­

cast horizon is found in  which at most three and usually only two orders are placed 

(the obligatory order in  the first period included). It is reasonable to expect similarly 

short forecast horizons to continue to apply when multiple items are considered and 

in  the presence of capacity constraints, as long as the utilization rate is not very close 

to 1. See Fede r g r u e n  and T zu r  (1994a) for a discussion of how these forecast horizon 

results relate to capacitated models. This suggests that a close to optimal solution may 

be generated by partitioning or truncating the horizon.

We therefore develop and analyze a new class of so-called progressive interval
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heuristics. A progressive interval heuristic consists of J iterations. In iteration £, the 

problem is solved to optimality for period 1 to some period Tp>, but all integer variables 

fo r periods 1 to 7> -  t  (for some t  > 0) and all continuous variables for periods 1 to 

some t f  < Tf>_i are fixed at their optimal values after iteration £ -  1. When solving 

a given interval problem, we append as boundary conditions, the necessary and suffi­

cient conditions for a feasible extension to the remainder of the planning horizon. The 

horizons are chosen such that 0 = To < T\ < ■ ■ ■ < Tj = T and 0 = t \  < t 2 < ■ ■ • < t j,  

while t  > T (  -  7 > _ |  the number of periods by which the horizon in  the T-th iteration 

is expanded. The complexity of any mixed integer programming method is largely de­

termined by the number of (unrestricted) integer variables. Choosing the parameter t  

sufficiently small, therefore ensures that the complexity in  each iteration grows only 

modestly. Thus, while the heuristic solves a sequence of progressively larger problem 

instances, exact solution methods remain viable w ith only modest increases in  compu­

tational effort.

We pay special attention to two extreme subsets of this class of heuristics: (i) the 

Strict Partitioning heuristics (SP): here tp = Tp_\ and Tp -  Tp_] = t , with the possi­

ble exception of the last interval. The planning horizon is thus partitioned into non­

overlapping intervals and in  the ^-th iteration, only the total cost pertaining to the 

newly appended r-period interval are minimized, given the boundary conditions (in 

particular ending inventories) generated in  the previous {£ -  l)s t  iteration; (ii) the Ex­

panding Horizon heuristics (EH): here t# = 0 for all £ = 1 ,... , /  -  1. A hybrid imple­

mentation would e.g. set t# -  [Tp -  M ]+ for some window M. The tradeoffs are clear: 

(EH) [(SP)] provides, w ith in the class of progressive interval heuristics, maximum (min­
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imum) flexibility at the expense of maximum (minimum) incremental computational 

complexity in  adjusting the solution from each iteration to the next.

When applied to the (JS)-model, the (SP)-heuristic can be implemented to be, simul­

taneously, asymptotically optimal as T — oo and to run in 0(N T2 log log T) time, pro­

vided some of the model parameters are uniform ly bounded from above or from below. 

With the same choice of t  and the same interval choices, the (EH)-heuristic continues 

to be asymptotically optimal and runs in  O (NT3) time. Our numerical study reveals, 

however, that it  generally results in  significantly better solutions than the (SP) heuris­

tic. Both heuristics can also be designed as polynomial time approximation schemes, 

i.e. to be of polynomial time complexity and to guarantee and e-optimal solution for 

any e > 0. To our knowledge, these are the first heuristics for multi-item capacitated 

lot-sizing problems to possess these properties.

While the above theoretical results refer to the (JS)-model, a comprehensive numeri­

cal study shows how in particular the (EH)-heuristic, can be effectively used for the gen­

eral (JlS)-model (with period- and item-dependent setup costs) as well. For the latter, it  

is possible to find the optimal solution for instances w ith up to 150-200 setup variables 

(e.g. when N = 10 and T = 15 or 20). For these problem sizes, the (EH)-heuristic, gener­

ates close-to-optimal solutions with an optimality gap of up to 2% across a large set of 

parameter combinations. (The (SP)-heuristic, while significantly faster, often generates 

solutions w ith optimality gaps above 10%.)

While exact optimality gaps can not be measured for larger problem instances, our 

theoretical results show that (at least for the (JS) model) optimality gaps can be ex­

pected to be even lower as T, the length of the planning horizon, increases. We system­
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atically evaluate the performance of both the (SP) and the (EH)-heuristic for problem 

instances with the number of items varying from 10 to 25 and the horizon length vary­

ing from  10 to 50 in  the (JIS) and up to 100 in  the (JS)-model. An earlier numerical 

study for the single item problem in  Fe d erg ruen  and T zu r  (1994b) shows that prob­

lems w ith up to 100 periods can be solved by a slight variant o f the (SP)-heuristic w ith 

an optimality gap of less than 7% and, on average, equal to 2%.

Summarizing, the main contributions of this chapter are (i) the design of a new class 

of heuristics; (ii) the demonstration that, for (JS), both the (SP)- and (EH)-heuristics can 

be designed to be of low polynomial complexity as well as asymptotically optimal; (iii) 

the proof that for finite T, both (SP)- and (EH) can be designed to to be polynomial time 

approximation schemes; (iv) the demonstration that a progressive interval heuristic 

generates close-to-optimal solutions with modest computational effort, even for large 

scale problems.

While our theoretical and numerical analysis are based on the (JS) and (JIS) models, 

we believe that the effectiveness of the progressive interval heuristics bodes well for its 

use in  general multi-period production and inventory problems.

The remainder of this chapter is organized as follows: Section 2.2 reviews the rele­

vant literature. In Section 2.3 we introduce the (JS)-model and its notation. In Section

2.4 we describe the new class of heuristics and develop worst case bounds for their op­

tim ality gaps. In Section 2.5, we discuss how each interval problem, which arises in  an 

iteration of the heuristic, can be solved effectively via a general purpose mixed integer 

programming method or a tailor-made branch-and-bound method. This allows us to 

identify implementations that are simultaneously asymptotically optimal as well as of
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very reasonable and polynomial complexity. Finally, Section 2.6 discusses extensions to 

the general (JlS)-model as well as the numerical study.

2.2 Literature Review

In this section, we provide a brief review of the existing literature, beyond the papers 

mentioned in  the introduction.

Ch e n  e t  a l . (1994) and Shaw and Wa g elm a n s  (1998) developed two relatively ef­

ficient pseudo-polynomial solution methods for the general single item model. Their 

extensions to the multi-item model result in dynamic programs w ith a state space of 

dimension N  and larger, and are therefore entirely unusable except for the smallest 

possible number of items N. As mentioned, even for the single-item model, this chap­

ter’s heuristics are, to our knowledge, the first to be asymptotically optimal and of 

polynomial complexity.

A ll other existing methods are based on heuristics and none has provable bounds 

for the associated optimality gaps. These heuristics can be divided into simple con­

structive heuristics and mathematical programming based heuristics. The constructive 

heuristics include “greedy methods” in  which a specific sequence is proposed to as­

sign the capacity of a given period to satisfy its or later demand, e.g. Eis e n h u t  (1975), 

La m b r e c h t  and Va n d e r  Eecken  (1978), D ix o n  and Sil v e r  (1981), and Maes  and Va n  

Wa s s en h o ve  (1986). Other constructive heuristics start w ith the solution o f the un­

capacitated model, and search for a feasible production schedule by simple shifting 

routines, e.g. Va n  Nu n e n  and Wessels (1978), Do g r a m a c i e t  a l . (1981), Na h m ia s
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(1989) and Ka r n i and Roll (1982).

The mathematical programming based heuristics employ linear programming, la- 

grangean relaxation, cutting plane methods and column generation techniques. Ex­

amples include Ba ker  and D ix o n  (1978), Eppen  and Ma r t in  (1987), Po c h e t  (1988), 

Le u n g  e t  a l  (1989), Ma r t in  (1987) and Tr ig e ir o  e t  a l . (1989). We refer to Maes and 

Wa s s en h o ve  (1988), Sa l o m o n  (1990) and Ku ik  e t  a l  (1994) for detailed surveys of 

these methods until 1994.

State-of-the-art solution methods include, in  addition to the bc-prod system men­

tioned in  Section 2.1 (Belvaux and W olsey (2000, 2001)), S ta d t le r  (2003) and Suerie  

and S t a d t le r  (2003). Interestingly, these methods all apply variants of the (EH)- 

heuristic: In the ‘fix-and-relax’ heuristic, each consecutive problem instance expands 

the horizon of the previous instance by appending the same number ( t ) of periods to 

its tail. The ‘internally rolling schedule heuristics’ in  S ta d t le r  (2003) and Suerie and 

S t a d t le r  (2003) use constant interval increments < t .  In each problem instance, in ­

stead of imposing boundary conditions that are necessary and sufficient for a feasible 

extension t il l the end of the fu ll planning horizon, the authors include the periods be­

yond the end of the current interval, however w ith all binary variables in these periods 

treated either as continuous variables (bc-prod) or set equal to one (S ta d t le r  (2003) 

and Suerie and S ta d t le r  (2003)). The heuristics in  the latter two papers substitute 

all cost parameters for the after-the-interval periods by zero, w ith the possible excep­

tion of variable overtime cost rates, in case the capacity constraints may be violated by 

scheduling overtime. (Additional heuristic changes are applied to an interval’s last set 

of periods.)
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Fe d e r g u e n  and T zu r  (1994c) describe an effective heuristic for the so-called Joint 

Replenishment Problem (JRP), which is similar to the (SP)-heuristic. (This heuristic can 

be designed to be asymptotically optimal and of polynomial complexity, under specific 

parameter conditions). The (JRP)-model is the special case of the (JlS)-model, which 

arises when no capacity constraints prevail. Federg ruen  and T zu r  (1999) describe a 

general framework for a variant of the (SP)-heuristic, w ith applications to other types 

of lot-sizing problems.

2.3 The multi-item model with joint setup cost (JS)

In this section we discuss our basic model (JS) w ith jo in t setup costs only. We use 

the index i  e {1 ,... ,N } to distinguish between items and the index t e {1 ,... , T\ to 

distinguish between periods. For i  = 1 ,. . . ,  N  and t = 1 , . . . ,  T, we specify the following 

parameters:

dtt = demand for item i  in  period t\ (du > 0)

Dt = aggregate demand in period t = X i l i  dit

cu = variable per unit order cost for item i in  period t

hu = cost of carrying a unit of inventory of item i  at the end of period t

K t = setup cost incurred when an order is placed in period t

Ct = order capacity, i.e. the maximum number of units which can be ordered in

period t.

Without loss of generality, we define the units of the items such that ordering one
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unit of an item consumes one unit of capacity. We define the following decision vari­

ables:

%it

Yt

ht

= order size for item i  in period i; i = 1 N \t  = l , . . . , T

1 i f  ZcLi X u  > 0
t = i , . . . , r

0 otherwise

= ending inventory of item i  in  period t; i = 1 N \t  = l , . . . , T

Let I® = the minimum aggregate inventory at the end of period t, such that a feasible 

production /  inventory plan exists for periods t + 1,... ,T. These minimum stock levels 

are easily computed from the following recursion, which can be verified by induction:

f t° = (D t+i - C m + / t°+1) + , t = 1 ,2 ,... , r  — 1, w ith 4  = 0 (2 .1)

The multi-item model can thus be formulated as follows:

(P) z* = m in^ X
U=i

s.t.

N

KtYt + (citX it + h ith t)
i=1

fit — fi( t—l ) + ^ i t  d iti i  — 1, ■ ■ ■ , N, t — 1 ,... ,T
1V
X * i t  ^  CtYt, t = l , . . . , T
i=1 

N

I  f it  2: f t°. t = l , . . . , T
i=1

x it > 0; f it > 0; Yt e {0,1}

(2 .2 )

(2.3)

(2.4)

(2.5)

(2 .6 )

The above formulation is often referred to as the network formulation. The plant 

location formulation is an alternative that disaggregates the production quantities {x u }
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into {Xist} w ith x lst = the amount of item i, ordered in  period 5 to satisfy demand in 

period t.

2.4 Progressive interval heuristics: worst case bounds for opti­

mality gaps

A progressive interval heuristic solves a sequence of J problem instances. The first in ­

stance considers the capacitated lo t sizing problem that arises when restricting oneself 

to the first T\ periods, i.e., it  solves (P) w ith T replaced by 7i. In each of the subsequent 

instances, a given number of periods < t  is appended to the tail of the previous plan­

ning horizon. In the h-th iteration, a lotsizing problem (JSh) is solved on the complete 

interval {1 ,... , T^}, albeit that all Y -variables of periods 1 ,... , Th -  t  are fixed at their 

optimal values in  the h -  l 5t iteration, i.e. when solving (JSh-1 ). Recall Th -  Th-1 < t , 

i.e. Th -  t  < Th-1 - Thus, the number of unrestricted binary variables in  each iteration 

remains constant, i.e. equal to t . Moreover, the aggregate ending inventory in  period 

Th is constrained from  below by the 1°-value.

Different progressive interval heuristics give varying amounts of flexib ility to the 

continuous variables in each of the J problem instances. As mentioned, we focus in 

particular on two extremes-, under the Strict Partitioning heuristics (SP), all interval 

increments (Tp -  Tf_] ) = t  with the possible exception of the last interval. Also, among 

the continuous variables, only those pertaining to the last t  periods of the current 

planning horizon are allowed to be chosen freely, (i.e. t f  = Tj> -  t  = Tf_i) w ithout 

any restrictions beyond those implied by the constraints of (P); all other continuous
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variables are fixed at their optimal value in  the previous problem instance.

Under the expanding horizon (EH)-heuristics, all of the continuous variables are 

allowed to be varied fu lly  (subject, of course, to the constraints (2.3) - (2.6)), i.e. t# = 

0; moreover this class allows for T# -  T(>_x < t , H = 1 ,... ,J  -  1. If  the stepsizes 

( 7>  -  <  t , even many of the setup decisions determined in  one iteration o f the

algorithm, may be revisited in  subsequent iterations, on the basis of additional demand, 

cost and capacity information pertaining to additional periods. (We have observed that 

it  is often effective to append a single period as one progresses from one interval to 

the next, i.e. -  7>_i = 1.)

Various intermediate implementations may be envisioned; for example, a (moving) 

window of M  > t  periods may be used such that the continuous variables in (up to) the 

last M  periods are unrestricted, as opposed to the last t  (SP) or all periods under (EH). 

Fed erg ru en  and T z u r  (1999) consider a slight variant of (SP) under which the size and 

the composition of the last (or several of the last) order periods in the previously solved 

iteration may be varied, along with the production quantities of the newly appended 

periods; see ibid for details.

Let zSP and zEH denote the cost of the solutions found by the (SP)- and the (EH)- 

heuristics, for a given choice of {I'g, tf , t }. We now derive worst case bounds for their 

optimality gaps, under m ild conditions for the cost, demand and capacity parameters. 

We firs t derive a lower bound for z*  as an explicit function of T. It is quite simple 

to obtain a lower bound when assuming all periods’ demands are uniform ly bounded 

away from zero; however, to allow for sporadic demands, we derive an alternative 

bound, merely assuming that the cumulative demand over a large enough time interval
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is uniform ly bounded away from zero. Its proof, while similar to that in Fed e r g r u e n  

and T z u r  (1994c), requires major adjustments to reflect the capacity limits.

Theorem 2.1 Assume there exists a positive integer 6 > 1, and for all i  = 1 ,N  

positive constants d u  such that

da + ■ ■ ■ + di(t+d-i) ^  dd j* i  = 1 ,... ,N, t = 1 ,... , T — 0 + 1 (2.7)
T
X d it > Tdu  i = l , . . . , N  (2.8)
t=i

In addition, assume there exist constants K* and C* and for each i = 1 ,... , N constants

h i*  a ndc i* such tha tK t > K *,C t < C*, h it > h i*  andca > Ci* fo r all t = 1 ,... ,T. Let

v’N j
2-i= l a i*> K ~ X i= l Ci*di*, H* —1 y N u .2 2.i=i ™i*d i*. Then, z* z y T

X*
20 if IV

dcfy = k +  - f a ( K *  + 2 H *d 2)H* - 3  H *e) i f d.* , m
c* ^ V T < 20

/(X*+2H*02)d* , H*C* 
\ C* 1 d* - 3  h * q) i f m . < djL 

V K c* < IB

Proof: We obtain a lower bound by replacing all fixed order costs by K * , all capacities by 

C* and for each item i  = 1 ,... , JV all variable order cost rates by c**, and holding cost 

rates by h i*. We refer to the resulting problem as the transformed problem. Consider a 

solution in  which m  > 1 orders are placed. For £ = 1 ,... , m  let n# denote the number 

of periods in the £th order cycle, i.e. the interval which contains the f ' h order period 

and all subsequent periods prior to the next order interval (if any). (The m [h interval 

terminates w ith period T.)

We first derive a lower bound for the total holding costs incurred in  a single order
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cycle of n  periods in the transformed problem. Note that zero-inventory ordering may 

fa il to be optimal in  the capacitated model, i.e. the starting inventory in  the firs t period 

may be positive for some or all items. However, the holding cost in  the order cycle is 

clearly bounded from below by assuming that the starting inventory equals zero.

Renumber the periods in  this cycle as 1 ,... , n  and let n  = ip9 + t  with 

0 < t  < 0, i.e., ip = j .  Fix i  = 1,. . .  ,N. Observe by our assumption that in each of the 

intervals [ ( j  -  1)0 + t  + 1, j 0  + t ]  for j  = 1 ,... , ip at least 9di* units are demanded 

for item i. Being ordered in or after period 1, the lowest holding costs for these de­

mands arise when 9di* units are demanded in period ( j  -  1)0 + t  + 1 

(i.e. in  the first period of this interval) and none in  the remaining periods of the interval 

[ ( j  -  1)0 + t  + 1, j 0  + t ].  It follows that the holding costs in  a single order cycle of n 

periods are bounded from below by

S i h i*9 d i*  Z j j J  (T + J0) = X ih i* 0 d i*  [ipT + j 0 ( p ( i p -  1)]

=  Z i h i*8 d i*  [ | ^ J  t  +  ^ 0  | ^ J  ( | ^ J  -  l ) ]  >  Z i \ h i * 6 2d i*  -  l )  ( ^ - 2 )  j

= g{n)  where g(x )  d= H * 9 2 ( f  -  l )  ( f  -  2) is convex.

This implies the following lower bound for the total cost over the complete horizon:

n e

m m

X  0 (nt)  ■ X  = T
T = l  £ = l

, T d *
I (2 .10)

T d * (T d *  T \  1
C* c * >20 /1

The lower bound fo r m may be imposed because when m C* < Td*, it  is infeasible 

to satisfy all demand. The equality in (2.10) follows, since, by the convexity of g(-),
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equal values n# = ^ , £  = 1, m  achieve the minimum to its left. (The upper bound for 

m  may be imposed since the minimand to the right of (2.10) is increasing for m  > j§.) 

(2.9) follows from (2.10), noting that for m  < jg , the ( -) + operators may be ignored. ■ 

We now derive an upper bound for the optimality gap of the (SP)- and (EH)-heuristic. 

The bound is established under the parameter conditions of the lower bound Theorem 

2.1, a uniform  lower (upper) bound for the capacities (holding cost rates) and a condi­

tion which specifies that a uniform slack capacity exists over any cycle of 9 periods, 

i.e.

(S) there exists a constant a  > 0 and an integer £ such that

r+? t+C
X  C r >  X  D r  + a  for all t = 0 , . . . , T ~ C  (2.11)

r = t + 1 r = t + 1

We first need the following lemma which shows that under condition (S) a uniform  

upper bound prevails for all minimum reserve stocks j:

Lemma 2.1 Let condition (S) hold and assume a constant C *  exists such that Q  < C * .  

Then

7t° < U =f £C* -  a  t = 1 ... ,T. (2.12)

Proof. By repeated substitutions in (2.1), we get fo r all t = 1 T:

f? =  m a x t+ i< 5 < r  [ X r = t + l ( ^ r  — TV )]  =  maXt + i<s<inin(7\t+£-l)  [ X r = t + \ ^ P r  ~  T V )]

<  m a x t+ i< s < T o m (T , t+ t ; - i )  X r= t+ 1 D r  ^  D r  where, by (S), the second equal­

ity  follows from X r= t+ i ( D r  -  Cr ) >  Z r = t + i ( ^ r  “  TV) for s >  t +  £,. Thus, I f  can be
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bounded by a sum of £ consecutive aggregate demands, hence by a sum of £ consecu­

tive capacity values minus cr, given (2.11). This proves (2.12). ■

Theorem 2.2 Let (S) hold. Assume there exists an integer 0 > 1 and for each i  = 1 ,... , N 

a constant d vlf. such that:

(du  + ... + d ij+ e - i)  s  0d i*, t -  1 , . . . ,  T — 0 + 1;
T

/ * "  du  >  Tdi%. 
t= l

(2.13)

(2.14)

In addition, assume there exist constants K * ,K * ,C *  and C* and for each i  = 1 ,N  

constants h u ,h *  ,c ^ ,c *  such that for all t > 1,K* < Kt < K *, C* < Ct < C *, h i* < 

hu ^  h* and Cj* < c;t < c*. Let Ac* = maxj [c * -  C j*]( ij = + Ac*, h * = min; h **,

Ah* = m ax[h* -  h f* ] and D* = d i*. Let y be defined as in (2.9) and

Pi = K* + c *

P2 = U (Ac*

P = Pi + P2-

(2.15)

(2.16) 

(2.17)

Then,

(a)
7SP

yT ( b )
2A_ < (J -  l)p

yT

Proof: (a) We show that an optimal solution of the complete problem can be trans­

formed, in two phases, into one which is achievable by the (SP)-heuristic, adding at 

most (J -  D p  to the total cost. In Phase I, the optimal solution is transformed into
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one w ith all intervals’ ending aggregate inventory equal to their minimum /°-level. In 

Phase II, the composition of the reserve stock at the end of each of the intervals is made 

identical to that of the solution of the (SP)-heuristic.

To describe the transformation in  Phase I, renumber the periods in  the first £ in ter­

vals from 1 ,... , Tf>, starting with T# and going backwards, i.e. period t is now renum­

bered as 7> -  t + 1, t = 1 ,... , Tf .  With this numbering, period t occurs t periods before 

the end of the £th interval.

In the optimal solution, let Qir  denote the number of units of item i  ordered in 

period r  to satisfy demands in  some future period in  the (£ + l ) 5t or later intervals 

( i = 1 ,... , N ,r  = 1 ,... , T(>). Also, let Qr  = X; Qir- The starting aggregate inventory of 

the (f! + l ) 5t interval is = X j i i  Qr > J? • Since a feasible solution exists for (JSf+ i) w ith 

a starting inventory of 7° only, it  is feasible to postpone the orders for ( X r l i  Q r) -  f? 

units to periods that belong to the (£ + l ) 5t interval itself. The transfer of these order

tional setup costs. An upper bound for the total additional costs due to the transfer of 

these order quantities is therefore given by:

This linear progam decomposes into Tp single constraint problems. Each is straightfor­

wardly solved in  closed form: for each r  = 1 ,... , 7>, set Q,r = Cr  for any item i whose

quantities requires at most additional setups in  the (£ + l ) 5t interval,

and therefore at most

max
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objective function coefficient is largest, unless all {Q,r  : i = I , ... ,N } - variables have 

negative coefficients, in which case it  is optimal to set Qir  = 0 for all i = 1 ,... , N. This 

results in the upper bound K *  + Z r i i  maxi [ § 7  + cf  ~ + + ^ i,r - 1 + Cr

< K *  + jJ rU  [n -  r h * ] + Cr < K *  + C* th -  r h * ]  < K *  + C*  {A p  -  ^A (A  + 1)7i*} 

= p i where A = | ^ j  is an upper bound on the number of periods in  which inventory 

may be held prior to the T-th interval for use during the f-th  or later intervals. (The first 

equality follows from  the fact that the A + 1-st until the 7 7 -th term in the sum to its left 

vanish). Apply the transfer process sequentially to the intervals £ = J -  1,J -  2 ,... ,1 

to end up w ith a solution in which all intervals’ ending aggregate inventory equals the 

minimum 7°-level and whose cost exceeds z*  by at most (J -  l) p i.

Let Lf denote the longest shelf life of any unit in stock at the end of the ('-th interval 

£ = 1 ,... ,J  -  1. In Phase II, we transform the Phase I solution by changing the item 

identity of at most 7° units in  stock at the end of period Tf, w ithout any additional 

changes in  the order and inventory plan. This maintains feasibility, leaves total set-up 

costs unaltered and adds at most:

J - 1
7°f (Ac* + LyAh*) (2.18)

7=1

variable order and holding costs. In view of Lemma 2.1, to show that the summand in 

(2.18) is bounded by P2 , it  suffices to show that L f < ( |^ J  + l )  £ + Ac*ht K* d=f L.

Assume first that at least one of the periods t * e | r ^ - ( [ ^ J  + l ) C  + l  Tf} has

slack capacity (in the Phase I solution). In this case, i f  one of the 7° units in  the reserve 

stock has a shelf life of more than L periods, the ordering of this unit can be post­
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poned un til t* ,  thereby reducing inventory costs by at least h * ( l - ( [ ^ J  + l ) £ )  = 

h* Ac*ĥ K* = Ac* + K * ' offsetting any increase in the variable ordering cost (and pos­

sibly one setup cost), due to the postponement. Thus, i f  any of the I j  units has a 

shelf life larger than L, a fu ll capacity order is placed in each period of the interval 

[ l>  -  ( [^ J  + l )  C + 1 , ■ ■ ■ , 7 >], resulting in  an ending inventory of at least

u j+D£+i (Q  -  Dt ) > + l )  a  > U units, which contradicts Lemma 2.1.

(b): Let I (l>) denote the N-vector of ending inventories at the end of the T-th in ­

terval, as determined in  the ('-th iteration of the (EH)-heuristic, £ = 1 ,... , J, and let 

[ y eh : t = 1 ,... , r |  be the T-vector chosen by this heuristic. Transform the optimal 

solution into a solution t t (,/i w ith cost value z (U) via Phase I and Phase II transforma­

tions as in  part (a) except that in Phase II the £-th interval’s vector of ending inventories 

is now matched to With T_i = To = 0, let tt(II) be an optimal solution of the mixed 

integer program (P^), where £ = 0

(Pe) \  z (t) = min(2.2) (2.19)

s.t. (2.3) -  (2.6) (2.20)

I iTh = I (i h) t = l  N, h = m a x {£ -  1, l),m ax(T, 1),T + 1 ,... ,J

(2.21)

Yt = YtEH t = l , . . . , T t - i .  (2.22)

(P£*+1) is obtained from (PE* ), by simultaneously adding the constraints Yt = YEH, t =

Tf*_x + 1 ,... ,T(* and eliminating the constraints IiTe*_x = i  = 1........N. Since

satisfies (2.21) and (2.22) for £ = £* , i.e. since it maintains the same ending
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inventories at the end of the /;*-th  interval as the EH-heuristic does at the end of the 

f?*-th iteration, and since it  is restricted to the same order periods in  the first (£* -  1) 

intervals as the (EH)-heuristic is in its ^ *-th  iteration, it  follows that both n ^ * ) and 

the solution obtained by the (EH)-heuristic in  its T*-th iteration, minimize total costs 

over the first Tg* periods subject to the constraints (2.21) - (2.22) w ith £ = £*. This

implies that r r ^ * 1 can be chosen such that Yt = YEU, t = T^*_1 + l  Tg* and hence

Yt = YEH for all t = 1 ,... , Tg*. Thus, n ^ * '1 is a feasible solution of (P^*+1) so that

zEH = z u) < z (J~l) < < z (0) < z (lI) < z *  + U -  1)P, (2.23)

where the equality follows from the (EH)-solution optimizing Pu \  the last inequality 

from part (a) and the one before that from t t ui >  being a feasible solution of P(0). ■

Remark: The proof of Theorem 2.2 reveals that a tighter bound, w ith p replaced by 

a smaller value, may be computed in any given instance, once the number of intervals 

and their lengths have been specified.

2.5 Solution methods for a single interval problem: polynomial 

and asymptotically optimal heuristics

We now discuss how a single interval problem in  an iteration of the progressive interval 

heuristic can be solved effectively. We have found that the general purpose branch- 

and-bound method embedded in CPLEX is very effective to solve (JS) problems; see 

Section 2.6 fo r details. Alternatively, several tailor-made branch-and-bound methods
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can be used. Below, we discuss three such methods. Two of them have the distinct 

advantage over the CPLEX-based algorithm that their complexity, for the (SP)-heuristic, 

is o f the order 0 (2 t P ( t )) w ith P(-) a polynomial in  t  (The complexity is 0 (2 TP(T)) 

for the (EH)-heuristic.). Theorem 2.2 shows that the two heuristics can be designed 

to be asymptotically optimal, e.g. by choosing every (except possibly the last) interval 

increment -  Tfi_] = t , T  = 1 ,... , /  - 1  w ith

T = [a lo g T l for some a > 0 (2.24)

or more generally by choosing t  = o(T), as T -» oo (The last increment Tp -  Tp_l = T -  

[ y TJ)- Thus, by choosing r  as in  (2.24), we obtain an algorithm which is simultaneously 

asymptotically optimal and of polynomial complexity.

Our three branch-and-bound methods are based on three bounds for the value of

z*.

zLB' = minimum cost value in the uncapacitated model, i.e. ignoring constraints

(2.4)

zLB2 = maxA>o z(A) where

z( A) = ra m {z L i(K tY t + Xu=i(CitXit + h it I i ) + \ t [C tY t - Z i X i t ])

s.t. (2.3), (2.5), (2.6)}.

In other words, zLB2 is the value of the Lagrangean dual associated w ith the relax­

ation of the capacity constraints (2.5). Clearly, zLB2 > z (0) = zLBl.

zLB3 = zLBvar + zLBfix, where
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zlBvar = minimum value of the variable costs, i.e. minimum cost value when all setup 

costs are reduced to zero, and

zLBfix = minimum value of the fixed (setup) costs required to satisfy all demands 

when in  each period t the best observed and yet unused setup cost and 

capacity value can be used (instead of only Kt and Q  being available).

Therefore, z iBhx is a lower bound on the minimum value of the fixed costs, i.e.

N N

CitXt f  +  ^  h j t / j t  
i=1 i=1

s.t. (2.3) - (2.6)z* > m in t Y

+ m i n | x ^ t n  s.t. (2.3)-(2.6)| (2.25)

= zLBy ar + zLB fix = zUhj

In the single item case (N=l), zLBl can clearly be evaluated via any o f the solution meth­

ods for the single uncapacitated model. (This can be done in  0 (T log T) time, see the 

Introduction.) In the multi-item case, evaluation of ziBl reduces to the solution o f the 

jo in t replenishment problem (JRP) without item-specific setup costs. In the important 

special case where no speculative motives for carrying inventory prevail, the complex­

ity  of this method is easily verified to be 0 (N T 2), see Fe d e r g r u e n  and T z u r  (1994c). 

For general variable holding and order costs, any of the known lower bounds for the 

JRP can be invoked, e.g. the bound in Fe d e r g r u e n  and T z u r  (1994c) which requires 

0 ((N  + K *)T lo g T )  time where K* = max t Kt-

To evaluate zLB2, the above methods need to be embedded in an unconstrained 

optim ization technique which searches for the maximizing vector A.

zLBi is the sum of two components: zIBvar is the minimum cost network flow in
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a network of special structure. Ah u j a  and Ho c h b a u m  (2004, §6.3)’s algorithm solves 

this problem in  0(NT  log T) time. To compute zLBfix, observe that it  is optimal to 

sequentially postpone setups until the last feasible period, since in any given period, 

any prior (unused) capacity and setup cost value may be chosen. Thus, assume that

the first j  setup periods t ( l ) ,  t(2 ) t ( j )  have been determined, together w ith their

“adopted” capacities and setup cost values; the next setup period f ( j  + 1) (if any) is then 

obtained as the first period t after t ( j )  for which Z *= i Ds is in  excess of the sum of the 

adopted capacities for periods t ( l ) , . . . ,  f ( j) ;  it  is then optimal to assign to this setup 

period the best observed and yet unused setup cost and capacity value. This sequence 

of setup periods (and associated setup costs and capacity values) can be determined 

in  0(T  log T) time, by maintaining two ordered lists of unused capacity and setup cost 

parameters. Thus, zLBi can be computed in  O(NYlogT) time.

Branch-and-bound methods

Our branch and bound algorithm bears the following similarities to that in F ed erg ru en  

and T z u r  (1994c): 1) it  im plicitly enumerates all possible subsets of the t  undeter­

mined order periods; 2) it characterizes each node of the b & b tree by a partition of the 

periods into sets S+,S~ and 5°, w ith S+ the set of periods in  which one is committed to 

place an order, S~ the set in  which no order is allowed and S° the set of periods where 

no decision is fixed yet; 3) the root of the tree has all t  periods in  the set S° and every 

non-terminal node has two successor nodes, one w ith an additional period shifted from 

S° to S+ and one w ith the same period shifted to S~. (This period is selected according 

to a specific branching rule.) A t any of the leaf nodes, for a given set of order periods,
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the problem reduces to a polynomially solvable network problem.

Compared to Federgruen  and T z u r (1994c), a different lower bound is used to 

evaluate each node of the b & b tree. For all r  = 1,2,3, and a given node characterized 

by S+,S~,S° let, ZLBr = Kt + the value of zLBr when the setup cost for periods 

i  g S+(S~) is changed to 0(oo) and the capacity for periods i  e S~ is changed to 0. 

Each of the values ZLBl, ZLB2, ZIj?3, can be used as a lower bound for any node in the 

tree; ZLBs gives the optimal solution value for nodes at the bottom of the tree, where 

S °  =  0 .

We now conclude that both the (SP)- and (EH)-heuristic can be implemented as an 

asymptotically optimal and polynomially bounded heuristic, e.g., i f  all intervals are 

chosen as in  (2.24).

Corollary 2.1 Consider the (SP)-heuristic with interval lengths specified by (2.24) and 

with each interval problem solved by the above branch-and-bound procedure.

(a) In the general multi-item case, the heuristic has complexity 0 (N T 2 log log T) i f  

each node is evaluated by the value ZLBi and 0 ( ( N  + K * ) T 2 log log T) i f  evaluated by

ZLBl.

(b) In the multi-item case without speculative motives, the heuristic has complexity 

0 (N T 2 log T) i f  each node in the branch-and-bound tree is evaluated by ZLB[.

(c) In the single item case (N = 1) the heuristic has complexity 0 ( T 2 loglog T) i f  each 

node in the branch-and-bound tree is evaluated by ZLBl or ZLB3.

(d) Assume the parameter conditions o f theorem 2.2 are satisfied. The heuristic is 

asymptotically optimal as T increases to infinity; the convergence o f the optimality gap
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to zero is uniform in N.

Proof. Parts (a)-(c): The (SP)-heuristic requires, to compute its solution for any given 

interval, at most 2T_1 exact evaluations, one for each leaf of the branch-and-bound tree 

and 2T_1 lower bound evaluations of the other nodes of the tree. Exact evaluation of a 

leaf takes O(iVTlogT) time, as shown when discussing z iBvar. Also, t  = O (lo g T ) and 

J = 0 {  i5p=). The complexity bounds in parts (a)-(c) thus follow from  those associated 

w ith a single evaluation of ZLBl or Z LRl in  the non-leaf nodes of the branch-and-bound 

tree, i.e. O (N T lo g T ), 0 ( ( N  + K * )T lo g T ), 0 ( N t 2) a n d O (T lo g T ) respectively. Part (d) 

follows from  the discussion at the start of Section 2.5. ■

Thus, the (SP)-heuristic can be designed to be asymptotically optimal w ith  a com­

plexity which grows only somewhat faster than quadratically in T, and linearly in  the 

number of items N. The (EH)- heuristic has larger complexity. For example, when im ­

plemented with interval increments of size t  and t  given by (2.24), its complexity is 

0 (iV T3) when each interval problem is solved by the above branch-and-bound proce­

dure based on the lower bound ZLBi. On the other hand, the (EH)-heuristic tends to 

generate significantly superior solutions, as we shall demonstrate in  the next section.

The heuristics can also be designed as polynomial approximation schemes.

Corollary 2.2 Assume the parameter conditions o f Theorem 2.2 are satisfied. For any 

given e > 0, choose t  = min |  T, f -  j  and all interval increments Ty -  7>_, = r  (with the 

possible exception o f the last interval increment which is o f length T -  r). Assume

each interval problem is solved by the above branch and bound procedure, with each 

node evaluated by zLBi. The (SP)- and (EH)-heuristics result in an e -optimal solution with
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a complexity bound which is 0{NT)  and 0 {N T 2 log T), respectively.

Proof. The optimality gap result is obvious i f  t  = T. Otherwise, by Theorem 2, for 

PI = SP and PI = EH: zP‘ ~*z* < ~ ^  ^ = e. The complexity counts are

immediate from  the proof of Corollary 1. ■

2.6 The general (JIS) - model and numerical results

In this section, we consider a generalization in which the fixed setup cost associated 

w ith an order depends on the specific items included in that order. More specifically, 

we assume that, in addition to the period-dependent (joint) setup cost Kt, incurred for 

any order in  period t, an item-specific setup cost is incurred for any item included in 

the order. Thus, let

Ku = setup cost incurred when ordering item i  in period t; 

i  = 1 ,... ,N \ t  = 1 ,... ,T.

The mixed-integer programming formulation in  Section 2.2 is easily adjusted to 

incorporate these item- specific setup costs. Add a new set of zero-one variables:

V i t
1 i f  xu  > 0 

0 otherwise, 

as well as constraints:

x it < Cty it i  = 1 ,... ,N, t = 1 ,... ,T. (2.26)

y it < Yt i  = 1 ,... , AT, t = 1 ,... , T. (2.27)
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The new objective function becomes:

T N
z* = m in \ K t Yt + ^  citXi t + h ith t + KitDdt (2.28)

t=i t = i

The mechanisms of both the (SP) and the (EH)-heuristics are easily generalized, as 

well. Note that it  is not necessary to solve each interval problem to optimality; to 

accelerate the procedure one may terminate as soon as a solution is found w ith in a 

given precision (5 %) of a lower bound. While it  is unknown how the bounds for the 

heuristics’ optimality gaps can be extended or how the heuristics can be designed to be 

asymptotically optimal and polynomially bounded, in  practice we find that in  particular 

the (EH)-heuristic generates close-to-optimal solutions in  a modest amount of time. To 

show this, we have conducted a numerical study, coding our heuristics in  C++ and 

running them on a Sun 4000 work station with Solaris 7 and 2 GB of RAM.

In designing our study, we have followed the design of Maes and Va n  Wa s s en h o ve  

(1986, 1988), one of the most comprehensive comparisons of known heuristics, except 

that they confined themselves to instances with N = T = 12 items and periods, while 

we have systematically varied the number of items between 10 and 25, and the number 

of periods from 10 to 50. (Maes and V a n  Wassen ho ve  restrict themselves to the case 

where only item-specific setup costs prevail, which remain constant across the com­

plete planning horizon). An additional difference is that, at the end of the eighties, no 

solution method was capable of solving the model to optimality, even for moderate size 

problems w ith N = T = 12. As a consequence, the quality of the proposed heuristics 

was gauged by their gap w ith respect to the best solution found after evaluation of (up
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to) 1000 nodes in  a tailor-made branch-and-bound tree. Today, we can solve these and 

many larger problems to optimality, enabling us to gauge the actual optimality gaps.

Our base set of problems has N = 10 items and a horizon of T = 15 periods. As 

in  Maes  and Va n  Wa s sen h o ve  (1988) all demands { d i t } are independently generated 

from  a Normal distribution w ith mean 100 and standard deviation of 10. With constant 

capacity levels C, we consider three levels for the ‘problem density’, defined as the ratio 

= ^rTC„  : low  density where the ratio equals 2, medium  density where it  equals 

4/3 and high where it  is 10/9. We set all variable cost rates hu  =  cit = 1. For each

item i  = 1 JV we determine the fixed (item-specific) setup cost indirectly by first

choosing the EOQ-cycle time ‘Time Between Orders (TBO)’ = and

determine the k value from this identity. The TBO value is generated from a uniform  

distribution on the interval [1,3], when considering low  TBO-values, the interval [2,6], 

when considering medium  TBO-values, and [5,10] for the case of high TBO-values. The 

jo in t  setup cost is calculated in  the same way, i.e. from the identity TBO =  y jM /v - 

We start by evaluating the (EH)-heuristic w ith respect to its optimality gap and run­

ning time, compared to the Complete Horizon Method (CHM) - the solution obtained 

by the standard CPLEX MIP-solver when applied to the fu ll problem. We consider all 27 

combinations which arise when combining the three problem densities, three product 

TBO values and three period TBO values. For each of these 27 combinations, we have 

generated 5 distinct problem instances and we report in Table 2.1 the average running 

times in CPU seconds, when solving the problem w ith CHM and w ith the (EH)-heuristic, 

implemented with t  = 5, = £, £ = 1 ,... ,J  = T and 6 = 1%. We also report the

optimality gap of the solution generated by this heuristic. A hyphen indicates that
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(one or more) problem instances could not be solved to optimality w ith in 6 hours, in 

which case the reported optimality gap refers to the best found solution by CPLEX so 

far. (Some of the optimality gaps are negative, implying that the (EH)-heuristic term i­

nates w ith a better solution than CHM after 6 hours of running time!) We note that, all 

optimality gaps are below 1.75%.

Where comparable, the CPU times appear to be of the same order of magnitude as 

those in state-of-the-art heuristics such as St a d t l e r  (2003), even though differences 

between the problem instances and platforms make a precise comparison impossible.

Unless specified otherwise, when CHM is used, we employ the plant location fo r­

mulation. Confirming prior experience w ith the (JlS)-model, we have noticed that this 

formulation usually, though not necessarily, results in faster solutions. (In contrast, 

we use the network formulation, unless specified otherwise, for progressive interval 

heuristics, as it typically runs faster for these heuristics.) As a further benchmark for 

the (EH)-heuristic, we have verified whether exact solutions (via CPLEX 7.1) could be 

significantly sped up i f  the problem formulation is strengthened by adding the cutting 

plane constraints (see Ba r a n y  e t  a l . (1984a,b)):

X x it ^  X ( X d iu ) y it  + h i, i  = l , . . . , N  and I = VS s {1 ,... , 1}
teS  teS  \ u = t  /

(2.29)

to the network formulation (and the same constraints, w ith Xu replaced by Xw=t x itw, 

for the plant location formulation). More specifically, we have added the violated con­

straints in  (2.29) after solving the LP-relaxation of the complete problem and before
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invoking the CPLEX MIP solver. Table 2.2 revisits the nine categories (of five problem 

instances each) in  Table 2.1 in which the item- and period TBO are of the same type, 

i.e. in  which they are both low, medium or high. Each of the last 6 columns reports on 

one of six solution methods, described below and executed w ith a 1 hour time lim it. 

The first reported number is the optimality gap w ith respect to the best among the 6 

solutions, w ith a * denoting a 0% gap; where the CPU time is less than 1 hour, we report 

this measure w ith in parentheses (in seconds). The 6 methods are: (1) CHM using the 

network flow formulation by itself; (2) CHM using the network flow formulation with 

the addition of violated cuts; (3) CHM w ith the plant location formulation by itself, (4) 

CHM using the plant location formulation with the addition of the above violated cuts; 

(5) the (EH)-heuristic where each interval problem is solved w ith the network flow fo r­

mulation, and (6) the (EH)-heuristic w ith the plant location formulation. We conclude 

that the cuts in (2.29) do not result in major improvements either in  terms of CPU 

time or in terms of the quality of the generated solutions. (Frequently, both attributes 

deteriorate, in fact).
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Table 2.1: (JIS): Gaps and running times of the EH heuristic w ith N  = 10, T = 15 (lim it 6 hours per instance)

density 

TBO period

low medium high

low medium high low medium high low medium high

low item TBO 0.00% 0.23% -1.10% 0.73% 0.80% 0.31% 0.29% 0.79% 0.06%

running time 30/18 75/19 -/126 452/30 56/23 60/29 6154/55 -/12 6 6370/98

medium item TBO 0.72% 1.73% 1.52% 0.37% 0.32% 0.20% 0.79% 0.04% 0.49%

running time -/80 2551/54 - /n o 252/34 -/126 - / l l  7 -/14 5 -/1 50 -/167

high item TBO -1.33% 0.96% 0.01% 0.17% 0.89% -0.43% 1.09% 0.01% 0.49%

running time -/1 19 -/98 -/52 -/238 -/210 -/232 -/448 -/1 70 -/1 70

UJ
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Table 2.2: (JIS): Gaps and CPU seconds of 4 exact and 2 EH heuristic

 solutions (limit 1 hour per instance) with N  = 10, T = 15_____

density TBO Net Net w /cuts Plant Plant w /cuts EH w /ne t EH w /p lan t

low low *(30) * (244) *(67) *(131) 1.85% (16) 2.35% (28)

low medium •k 0.75% 1.03% 0.25% 1.15% (38) 1.42% (106)

low high * 1.35% 0.90% 0.02% 5.32% (53) 2.19% (145)

medium low 0.34% 0.64% k 0.13% 1.17% (25) 1.16(32)

medium medium 0.82% 1.03% 0.46% 0.48% 0.12% (67) * (297)

medium high 1.02% 0.67% 0.59% 0.14% 0.15% (136) * (548)

high low 0.11% 0.40% * 0.34% 0.31% (51) 0.18% (98)

high medium 0.78% 1.01% 0.62% 0.91% 0.20% (96) * (288)

high high 0.91% 1.15% 1.08% 1.16% 0.04% (392) * (947)

In Table 2.3, we show that the (EH)-heuristic, again implemented w ith t  = 5 and 

7> = £, £ = 1 ,... , J, can be effectively used for significantly larger problem instances. 

Varying N  from 5 to 25 and T from 10 to 50, we report the CPU running time in  seconds. 

We specify the parameters as above, confining ourselves to the case where the problem 

density is medium, as is the ‘item TBO' and ‘period TBO’ value. Three problem instances 

are generated for every combination of N  and T.
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Table 2.3: (JIS): Running times for the (EH)-heuristic

periods 10 25 50

5 item 7 42 124

10 item 29 184 524

15 item 416 2694 4310

20 item 1600 9372 16159

25 item 20335 66634 58264

As mentioned in  Section 2.4, the (SP)-heuristic is considerably faster than the (EH)- 

heuristic but it  generally generates solutions w ith significantly larger optimality gaps. 

Table 2.4 illustrates this for a set of 27 problem instances, all w ith IV = 10 and T = 

15 and parameters as specified in  our basic set. Focusing on the medium problem 

density case, we consider all 9 combinations of ‘product TBO’ and ‘period TBO’-values, 

generating 3 instances for each. We report on the running times of CHM (terminated 

when a solution is found within 1% of the best lower bound), the (EH)-heuristic and 

the (SP)-heuristic. We also report both heuristics’ average optimality gaps. While the 

optimality gap for the (EH)-heuristic is never in  excess of 3% and on average equals 

1.2%, that of the (SP)-heuristic may be as high as 33% and is on average 14.7%.
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Table 2.4: (JIS): Gaps and CPU seconds for the CHM (within 1% of LB),

 the (EH)- and (SP)-heuristic with JV = 10, T = 15______

TBO period low medium high

low item TBO 0.9%/3.9% 0.1%/7.0% 0.3%/8.6%

running time 9/7/1 9/8/1 13/6/1

medium item TBO 1.396/11.396 0.8%/11.5% 0.5 V I 1-0%

running time 262/19/1 390/19/1 208/18/1

high item TBO 2.8%/33.8% 2.9%/25.9% 1.2%/19.7%

running time 7854/23/1 5235/24/1 6750/26/1

In Table 2.5, we evaluate the optimality gaps for the (JS)-problem w ith period-depen­

dent setup costs only. To this end, we consider a set of 45 problems with N = 10 and 

T = 30 periods; we again consider all 9 combinations of ‘TBO’ and problem density 

values and generate 5 problem instances for each for these combinations. We report 

the CPU times of the CHM, the (EH)- and the (SP)-heuristic, along w ith the optimality 

gaps associated w ith both heuristics. Once again, the (EH)-heuristic generates solutions 

w ith in 1% of optimality and does so within approximately 20 seconds of CPU time. The 

CHM often requires several thousands of CPU seconds (i.e. many hours of CPU time); 

its solution times depend highly on the parameters of the problem. The (SP)-heuristic 

is an order o f magnitude faster than the (EH)-heuristic but may generate solutions with 

optimality gaps as large as 15%. Clearly, the (EH)-heuristic can be employed for far 

larger problem instances.
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Table 2.5: (JS): Gaps and CPU seconds for CHM, the (EH)-heuristic

 and the (SP)-heuristic with N  = 10, T = 30_____

density low medium high

low TBO 0.296/6.0% Q.5%/1.6% 0.296/0.596

running time 44/17/1 48/17/1 21/17/1

medium TBO 0.896/12.1% 0.196/3.496 0.196/5.096

running time 742/29/3 712/19/1 85/19/1

high TBO 0.596/15.096 0.196/3.996 096/6.096

running time 1150/22/2 3973/21/1 127/19/1

Finally, we consider the case w ith item-dependent set-up costs only. Table 2.6 com­

pares the (EH)-heuristic and CHM, for the nine relevant item-TBO and problem density 

values in  Table 2.1 (As in Table 2.2, the CHM is terminated after 1 hour). A ll of our 

conclusions regarding the quality of the (EH)-heuristic solutions and the running times 

continue to apply for this special case of the (JlS)-model.
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Table 2.6: (JIS): Gaps and CPU seconds for CHM 

and the (EH)-heuristic w ith item-dependent 

fixed costs only (Kt = 0,1V = 10, T = 15)

density low medium high

low item TBO 0.5% 0.5% 0.4%

running time 2/7 7/7 -/13

medium item TBO 1.7% 1.6% -1.1%

running time -/28 -/44 -/103

high item TBO 1.0% -0.7% -2.5%

running time -/41 -/126 -/358

Returning to the general (JlS)-model, B elvaux and W olsey (2000, 2001) observe 

that in  many applications, at most one or two items may be ordered per period. The 

authors refer to such models as ‘small bucket models’. Once again, the mechanics o f the 

(SP)- and (EH)-heuristic are straightforwardly adjusted to accommodate this restriction. 

For small bucket models even the branch-and-bound methods of Section 2.5 are easily 

adjusted. Choosing t  = TalogTl, as in (2.24), this gives rise to a polynomial time 

implementation of the heuristics for the (JlS)-model, where the complexity bound is 

a factor O(N)  or 0 ( N 2) larger than the corresponding complexity bound fo r the (JS)- 

model.

Similarly, the mechanics of the (SP)- and (EH)-heuristic are easily adjusted to (i) add 

capacity lim its for individual items in each period, to (ii) allow for multiple capacitated 

order batches in every period, as in  An il y  and T z u r ’s (2004a,b) MIMV-problem, to (iii) 

address the hierarchical planning problems in  Graves  (1982) or V a n  Ro y  and Wolsey
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(1987) which differ from  the (JIS) model w ith capacity limits for each item only by 

allowing the (joint) capacity to be increased with overtime at a linear penalty cost, or to 

(iv) handle any of the other variants mentioned in Be lv a u x  and Wolsey  (2000, 2001).
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Chapter 3

Probabilistic Analysis of Progressive 

Interval Heuristics for Multi-Item 

Capacitated Lot-Sizing Problems

3.1 Introduction

This paper conducts a probabilistic analysis of an important class of heuristics for 

multi-item capacitated lo t sizing problems. More specifically, we address the following 

classical problem (P): a family of N  items is to be procured from the same production 

facility or outside supplier. The planning horizon consists of T periods (not necessarily 

of equal length). Demands are specified for each item and each period of the planning 

horizon. The aggregate order size, in  any given period, is bounded by a capacity lim it, 

which may vary over the course of the planning horizon. The costs consist of inventory

45
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carrying, variable and fixed order costs. As to the latter, the fixed order cost in  any 

given period only depends on the period index, but not on the composition of the 

order. The inventory and variable order costs are proportional w ith the end-of-period 

inventories and order sizes, at item- and period-dependent cost rates. The objective is 

to minimize total costs for the planning horizon while satisfying all demands, without 

backlogging.

Despite a voluminous literature devoted to the general model (P), it  continues to 

present a major challenge to theoreticians and practitioners alike. The problem is NP 

complete, even in  the special case of a single item (N = 1), as shown by F lo r ia n  e t 

a l  (1980). Until recently, exact and heuristic solution methods have only been suc­

cessfully applied to instances w ith a relatively low number of items and/or periods. 

Chapter 2 of this dissertation investigated the following class of so-called progressive 

interval heuristics. A progressive interval heuristic consists o f J iterations, where, iter­

ation by iteration, the problem is solved, to optimality, over a progressively larger time 

interval [1 ,7^], i.e. Ty < Ti < ■ ■ ■ < Tj = T . When solving a given interval problem, 

the necessary and sufficient conditions for a feasible extension to the remainder o f the 

planning horizon are appended as boundary conditions. To ensure that the computa­

tional complexity in  each iteration remains manageable, the heuristic fixes, in  iteration 

£, all integer variables for periods 1 to Tf -  t  (for some t  > 0)  and all continuous vari­

ables for periods 1 to some t(> < Tf>_y at their optimal value after iteration £ -  1. The 

horizons are chosen such that 0 = t\ < tz < ■ ■ • < t j  while t  > T# -  Tf_lt the number 

of periods by which the horizon is expanded in  the £-th iteration.

We characterize the asymptotic performance of the progressive interval heuristics
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as T goes to infinity, assuming the data are realizations of a stochastic process of the 

following type: the vector of cost parameters follows an arbitrary process w ith bounded 

support, while the sequence of aggregate demand and capacity pairs is generated as an 

independent sequence w ith a common general bivariate distribution, which may be of 

unbounded support. We show that important subclasses of the class of progressive 

interval heuristics can be designed to be asymptotically optimal with probability one, 

while running w ith a complexity bound which grows linearly w ith the number of items 

N  and slightly faster than quadratically w ith T. Our probabilistic analyses complement 

the worst case analyses in  Chapter 2 where asymptotic optimally is shown under condi­

tions which require that all demands and capacities are uniformly bounded and that the 

aggregate capacity over a large enough interval of time exceed the aggregate demand 

by at least a minimum slack value a  > 0. Both of these assumptions are somewhat 

restrictive, in the context of an asymptotic analysis where very large planning horizons 

T are considered.

For many types of complex (NP-complete) logistical planning problems, probabilis­

tic analyses have provided performance guarantees for various classes of heuristics, 

fostering insights into which algorithmic approaches are effective for large size prob­

lems. One such planning area is that of vehicle routing, starting w ith the seminal papers 

by Karp  (1979) and Ha im o v ic h  and Rin n o o y  Ka n  (1985); see Co f f m a n  and Luek er  

(1996), Fede r g r u e n  and Sim c h i-Le v i (1992) and An il y  and Bra m el  (1999) for sur­

veys. (Some of the planning models integrate vehicle routing w ith inventory planning 

but, thus far, only in a context of demand processes that occur at constant rates.) Other 

logistical planning areas supported by probabilistic analyses include (hierarchical) fa­
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cility location and sourcing models (e.g. Ch a n  and Sim c h i-Le v i (1996), Galleg o  and 

Sim c h i-Le v i (1997), Fis h e r  and Ho c h b a u m  (1980), and Ro m e ijn  and Ro m e r o  M orales  

(2001)). See Br a m el  and Sim c h i-Le v i (1997) for a general overview. Rh e e  and T a l a - 

g r a n d  (1987, 1989) and Rh e e  (1993) have shown how probabilistic analyses o f a va­

riety of logistical planning problems can be based on specific large deviation results. 

Our analyses, as well, are in part, based on such large deviation techniques. To our 

knowledge, the probabilistic analyses in this paper represent the first such analyses 

fo r inventory planning models w ith time-varying parameters (, otherwise referred to as 

dynamic lo t sizing problems).

We conclude this section w ith  a brief review of the relevant literature beyond the 

papers mentioned above. The (NP-) complexity of the problem arises from the super­

position o f (joint) setup costs and capacity lim its. Indeed, the problem is solvable in 

OiNT  log T) time, i f  either the capacity constraints are relaxed or in  the absence of 

fixed order costs. In the former case, the problem decomposes into N  independent 

single item lotsizing problems for which one of the O(TlogT) methods by Ag g a r w a l  

and Pa r k  (1992), Feder g r u en  and T zu r  (1991) or Wag elm an s  e t  a l . (1992) can be 

used. In the latter case, the problem is solvable in 0(NT  log T) time w ith Ah u j a  and 

Ho c h b a u m  (2004)’s recent method.

There is a voluminous literature describing various heuristics for the general m u lti­

item model. We refer to Sa l o m o n  (1990) and Ku ik  e t  a l . (1994) for surveys of the 

literature until 1994. State-of-the art solution methods include Be l v a u x  and Wolsey  

(2000, 2001), St a d t l e r  (2003) and Su e r ie  and Sta d t l e r  (2003). These methods are 

all based on variants of progressive interval heuristics. See Chapter 2 for details and a
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more detailed literature review. Other than the above mentioned worst case analyses 

in  the latter paper, the only performance guarantees for heuristics for capacitated lot- 

sizing problems w ith general time-dependent capacity lim its are due to Ga v is h  and 

Jo h n s o n  (1990) and v a n  H oesel and Wa g elm a n s  (2001). The latter developed a fu lly 

polynomial approximation scheme for the general single-item model, after the former 

proposed such a scheme for a more restricted version of the problem.

The remainder of this chapter is organized as follows: In Section 3.2, we specify the 

model, the probability model generating its data and the class of progressive interval 

heuristics. In Section 3.3, we establish almost sure asymptotic optimality for heuristics 

in  this class as well as their polynomial complexity bound. Section 3.4 concludes the 

chapter w ith  a discussion of the case where the items’ shelf life is uniform ly bounded 

e.g. because items are perishable.

3.2 The model and the class of progressive interval heuristics

The model employs the following data, where the index i e  {1 ,... ,N } is used to dis­

tinguish between items and time periods are indexed by t. (Demands are represented 

as multiples of the volume that consumes one unit of capacity):

cu = variable per unit order cost for item i in  period t

hu  = cost of carrying a unit of inventory of item i  at the end of period t

Kt = setup cost incurred when an order is placed in period t

du  = demand for item i  in  period t; (du  > 0)
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D t = aggregate demand in period t = X i l i  d lt

Q  = order capacity, i.e. the maximum number of units which can be ordered in

period t.

We use the following set of decisions variables:

Xu = order size for item t in  period t; i = 1 ,... , N\ t = 1 ,... , T

t = 1 ,... ,T
1 if  Z i L  1 X i t  >  o

0 otherwise

In  = ending inventory of item i  in  period t ; i  = 1 N \t  = l , . . . , T

Let i f  = the minimum aggregate inventory at the end of period t, such that a feasible 

production /  inventory plan exists for periods t + 1,... , T. These minimum stock levels 

are easily computed from the following recursion, which can be verified by induction:

/? =  (£ > t+ i -C t+i + / t°+1) + , t = 1 ,2 , . . .  , T -  1, with /? = 0 (3.1)

This is the well known Lindley equation, see e.g. A smussen (1987). The following is
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a standard formulation:

T

1
t = l

N

K f Y t  +  (C i tX i t  +  h i t h t )
i = 1

(3.2)(P) z* = m in-

s.t.

l i t  = ht t+i ) + x it -  d i t , i  = l , . . . , N ,  t  = l , . . . , r  (3.3)

N

X * it < Ct Yt i  = 1, . . .  ,N,  t  = l , . . . , r  (3.4)
/= l

iv
X / i t  2: / t° t = l , . . . , T  (3.5)
i= l

x it > 0; la  ^  0; y t e { 0 , l }  (3.6)

We assume that the model data are generated by the following probabilistic model: 

the ( 2 N + 1 )T cost parameters {Kt ,d t ,  h lt \ are generated by an arbitrary  stochastic 

process w ith support on a hypercube in the positive orthant of K(2JV+1)r. As to the 

sequence of aggregate demand and capacity pairs {(D t , Q ) : t = 1 , . . .  , T},we assume:

(A) {(D t,C t ) : t = 1 ,... , T} is a sequence of independent pairs of random variables, 

all distributed like (D, C) w ith a general bivariate distribution, possibly w ith unbounded 

support, such that the marginal distribution of D has a moment generating function, 

i.e. E(e0D) exists for some 9 > 0, 5 = E(D) > 0 and the support o f the distribution of 

C is bounded from below by a constant C*. Moreover, p = E(C) -  E(D) > 0.

The requirement that the demand distribution has a moment generating function 

which is finite in  the neighborhood of the origin covers most of the distributions com­

monly used in  (stochastic) inventory models, (e.g. the Normal, Gamma, Negative Bi­

nomial or Weibull distributions). The condition merely precludes heavy-tailed demand 

distributions which implies heavy-tailed distributions for the steady-state distribution
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of the reserve-stock variables The condition p = E(C) -  E(D) > 0 is necessary to 

ensure that the generated problem instances be feasible as T becomes large. Let <//(0) 

denote the cumulative generating function (cgf) of the random variable (D-C) which is 

the logarithm of its moment generating function:

<p(0) = log  E [e 9lD~C)] .

Since D has a finite moment generating function on some interval [0 ,0 ], so does (D -C ),  

so that tp(d) < oo on [0 ,0 ]. Moreover, <//(■) is differentiable w ith ip(0) = 0 and i//(0 ) = 

- p  < 0, by (A), so that <p(9) < 0 for all 0 > 0, sufficiently small.

When the items have a lim ited shelf life, we show in Section 3.4 that our results 

continue to apply under generalizations of condition (A), allowing for various forms of 

intertemporal demand and capacity dependencies.

In a progressive interval heuristic, employing J  iterations, the T-th iteration consists 

of solving (P), w ith T replaced by Ta and all (integer) T-variables for periods 1 ,... , T ( -  t 

and all (continuous) x- and /-variables for periods 1 , . . .  , tg < fixed at their opti­

mal value in  the £ -  1st iteration. (In the first iteration, no restrictions apply to any of 

the variables.) Thus, the number of unrestricted integer variables in  each (except for 

possibly the first) iteration is kept constant at t .  Since the complexity of any mixed 

integer program is primarily determined by the number of (unrestricted) integer vari­

ables, the computational complexity remains manageable when choosing t  sufficiently 

small, and from each iteration to the next it  grows only moderately.

As in  Chapter 2, we pay special attention to two extreme subclasses: (i) the Strict
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Partitioning heuristics (SP), w ith all (except for possibly the last) interval increment 

T(i -  7 > _ i  =  t  and tp = Tp_i = Tp -  t ;  (ii) the Expanding Horizon heuristics (EH) 

w ith all tp = 0. The (SP)-heuristics are related to the Time Partitioning heuristics, see 

Fe d e r g r u e n  and T z u r  (1999).

Thus, the (SP)-heuristics minimize the computational complexity of each interval 

problem at the expense of providing minimal flexibility to the continuous variables. 

The (EH)-heuristics, while of larger computational complexity, provide maximal flexi­

b ility  for the continuous variables and even for the integer variables, in  case interval 

increments Tp -  Tp_i < t  are chosen. Under such choices, even many of the setup deci­

sions made in  one iteration, may be revisited in subsequent iterations, on the basis of 

additional demand, cost and capacity information pertaining to additional periods. The 

numerical study in  Chapter 2 indicates that (EH)-heuristics can be used effectively to 

solve moderate to large size problem instances and that the solutions generated come 

very close to being optimal. Those generated by (SP)-heuristics typically exhibit larger 

optimality gaps.

3.3 Almost sure asymptotic optimality

In this section, we show that both (SP)- and (EH)-heuristics can be designed to be simul­

taneously almost surely asymptotically optimal as well as of low polynomial complexity. 

As w ith all (SP)-heuristics, we confine ourselves to (EH)-heuristics in  which (with the 

possible exception of the last iteration) exactly t  periods are appended to the tail of 

the planning horizon, as we progress from one iteration to the next (Tp -  Tp_p = t ) .
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We show that both heuristics, w ith cost values zsp and z iEH), respectively, are almost 

surely (a.s.) asymptotically optimal i f  the interval increment t  is adjusted as a function 

of T, where

t  = Q (log T ) , i.e. lim  = oo,e.g. (3.7)
T- 00 lOgT

t  = = p [lo g T ]^ , for some r\ > 0  and £ > 1

To derive a specific complexity bound, we assume that each interval problem in  each 

iteration is solved w ith a tailored branch-and-bound procedure, i.e. the b&b-procedure 

in  Section 2.5 in  which each non-leaf node of the tree is evaluated w ith lower bound 

IBs, ibid.

Theorem 3.1 Consider a (SP)-heuristic with t  = t] flog T}^ for some rj > 0 and £ > 1. 

The heuristic is asymptotically optimal, a.s. and it can be designed to run 

in 0(NT^+1 log log T) time as well.

Proof. Let c *  > 0  denote the essential infimum of the stochastic process 

{Cit : t = 1 ,... ,T }. Observe first that by the law of large numbers, w ith probability 

one, lim in fr ,oo y- > 1 Ci* lim in f r _ 00 f  Z t = id it = > 0, w ith 5t = E(di t ).

(Note that Si > 0 for at least one i = 1 ,... ,N  since £ i i i  Si = 6 > 0.) In other words,

SP *
with probability one, the numerator in  the optimality gap z ~*z grows at least linearly 

in  T. It thus suffices to show,

lim  i  \zSP -  z*  1 = 0 , a.s. (3.8)r - 00 T l  J

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

55

As in  the worst-case analysis of Theorem 2.2 in Chapter 2, we transform an optimal 

solution for the complete problem in two phases into a solution which is achievable 

by the (SP)-heuristic. In Phase I, the optimal solution is transformed into one w ith all 

intervals’ ending aggregate inventories equal to their /°-values. (Note that that the 

solution generated by the (SP)-heuristic satisfies this property as well.) Let z l denote 

its cost value. In Phase II, the composition of the reserve stock at the end of each of 

the intervals is made identical to that of the solution of the (SP)-heuristic, resulting 

in  a solution w ith the cost value z11. This solution is one which is among the ones 

considered by the (SP)-heuristic, i.e. zn > zSP. Thus,

Following the proof of Theorem 2.2 in  Chapter 2 and given the (general) assumption 

about the stochastic process which generates the cost parameters, ones verifies that 

an integer A > 1 and constants Bi and B2 exist such that z1 -  z* < (J -  l )B i + 

B2 z j z l  Z r= 7>-A+ 1  ° r ■ I f  A  > t ,  the partial sums {x J ir -A + i^ V  :£  = 1,... ,J  -  l ]  may 

overlap. However, z ' - z *  < (J -  1 )B\ +B i ['£ ] Z r= r-a - i)A + i Cr  is a valid upper bound. 

Thus, ^ = f- < [Bi + B2\ j ] A j j y j a  Z J = t - u - da+i c r ]  and lim T-oo = 0  a.s., 

since limr-oo ^  = limr-oo t _1 == 0  and since, w ith probability one, 

limr-oo (jrf)A  S r= r -y -d a + i Cr = E(Ci) < g by the law of large numbers and the fact 

that the sequence {Ct : t = 1,2, . . . } is an i.i.d. sequence of random variables.

To bound the additional cost incurred because of the Phase II transformation, let 

Ac* = maxt m a x i^ [c jt -  q ( ], Ah* =m axt max ^ d h i t  -  h ( t ], = in fj,t hu and K* =
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maxt Kt and note that Ac* = 0(1), Ah* = 0 (1 ) andK* = 0(1) as T — oo while h * > 0.

The solution obtained after Phase I and the solution generated by the (SP)-heuristic, 

both have I j e = 7° for all T = 1 ,... , J. In Phase II, we obtain the desired composition of 

the ending inventory at the end of the J intervals by changing (only) the item identity of 

at most (all of the) 7° units in the ending inventory of the £ - t h  interval, w ithout any ad­

ditional changes in  the order- and inventory plans. The transformed solution remains 

feasible, incurs no additional fixed order costs and adds at most £ jZ \  I j  (Ac* +L$Ah*) 

in  variable costs, where Lf denotes the shelf life of the oldest unit in  the reserve stock 

at the end of period Tf. Thus, to prove (3.8) it  suffices to show that

1 J~x
lim  — Y  I? (Ac* + 7./? A h*) = 0, a.s. (3.10)
T~'00 i=i

Recall that j / ° j  in  (3.1), when traversed backwards, is a Lindley process. Since the 

pairs {(D t ,Q )} are i.i.d, and since p > 0 , j l f j  has a lim iting distribution 1° (i.e. 

limt^oo 7°(T) = 7°, where the convergence is in distribution.) w ith E(I°) < oo, see 

A s m u s s e n  (1987, §8.1). Moreover, in  view of the remaining assumption in  (A), the dis­

tribution of 7° has an exponential tail, i.e. there exist constants « and > 0 such 

that P r [ I °  > x ]  ~ ae~Px , x  -  oo (i.e. lim x-oo = 1) (see A s s m u s s e n  (1987,

§12.5). Thus, for some x °  > 0 ,P r [ I°  > x ]  < 2ae~$x , for all x  > x°. Finally, let 

7(T) = maxt=i  t  7f° denote the largest minimum reserve stock required over the en­

tire planning horizon. Since 7° has the same distribution as [D -  C + 7°], and since 

0 = I j  <st 7°, one easily verifies by complete induction that 7° <st 7° for all t = 1__ , T.
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Let n (T ) = J t  log T denote the geometric mean of t  and log T and note from (3.7) 

that

lim  = 0 and lim  - = 0 . (3.11)
r - oo n (T ) r - oo t

We first show that

lim  P r [Lf < n(T)  for all £ = 1 ,... ,J  -  1] = 1 (3.12)T —oo

i.e. asymptotically the maximum shelf-life of any unit in  the reserve stock at the 

end of any o f the intervals (in the Phase I solution) is almost surely bounded by h(T ). 

Under (3.12) we have almost surely that (3.8) holds since

1 /_1
0 < lim  -  (A c * + L fA h * )

T~°°T t =i
J -1

o
Tg

„ ,. ( (Ac* + n (T )A h*)  1 V r
s S t  f -------

-  It*  ( l im  2 ^ ) e ( / ° 1 -  0, a.s.V r-oo t  J

where the first equality follows from the the fact that the |-process is ergodic, so 

that a long-run average, sampled at equidistant epochs, converges w ith probability one 

to the expected value of the lim iting distribution, while the second equality follows 

from  (3.11).

It remains to prove (3.12). Note that P r[L \  > n (T )  or I 2 > n (T ) or .. . L / - i  > 

n (T )] < S / r /  P r [L f  > n (T )].  Choose 0 < 9 < 0 such that ip(9) < 0. To bound each of
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the terms in the sum, consider first the conditional probability P r[L (  > n ( T ) ] \ l T e =  i° ], 

which is bounded by P r [ 'E , l iTg-n(T)+i(c r  ~ D r ) ^  i 0# \he = i° ]  w ith n(T) = n (T) -

A  c * + K *

(If a unit, in  stock at the end of period 7>, has a shelf life larger than n(T),  this 

implies that a full capacity order is placed is in  each of the periods in  the interval 

[7> -  n(T) + 1,..........7>], for otherwise the procurement of this unit could be post­

poned t il l some period in this interval w ith slack capacity, saving at least n (T ) -  n (T ) 

periods’ carrying costs, i.e. at least (Ac* + K*),  more than offsetting any additional 

order costs. However, given the condition I te = i®, this situation can only happen i f

y
^ r = T # - n ( T )  + x(C r - D r ) < i p  Thus,

P r [ L e > n ( T ) \ $ ]  < P r

= P r

= P r

Tt
X  ( C r - D r )  <i°f \ITe = i°e

r = T # - n ( T )  + 1 

Te
X  ( ^ r  ~ ^ r )  — -ify fre  =

r - T ( - n ( T )  + 1 

n(T)

X  (Dr  -  Cr ) > - i °
. 1=1

< e x p j-n (T )

(3.13)

where the second equality follows from the fact that only depends on the de­

mand and capacity values in  periods Tf + 1 ,... , T, see (1), so that the conditional dis­

tributions of { (Dr  -C r \ lT ( ) : y = Tf> -  n(T)  + 1 ,. . . ,  Tp \ coincide w ith the unconditional 

distributions {Dr  -  Cr : r  = Tf -  n (T ) + 1 ,... , Tf} and hence those of {D \ , ... , Dn(T)} 

bythei.i.d. assumption of {(D t , G ) } ^ .  The last inequality in  (3.13) follows from  Cher-
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noff’s inequality. We thus obtain the following bound on the unconditional probability

P r [L t > h (T ) ]  < £ , 0  {e x p (-n (r) j//(0 ))e xp (0 J r,)} (3.14)

< e x p (-n (D (//( 0 ))£/r exp(0 / r )

Note that

E exp {9 l(T )}

r  00 r  00

-  e0xd [ l  -  P r( I (T )  < x ) ]  = 1 + deexP r [ I (T )  > x ]d x  
Jo Jo

r  00

1 + J 9edxPr[I® > x  or 7° > x  or . . . I j > x ] d x

* r  00

< 1 + X  Oe0xP r [ I t  > x ]d x
t=i
T fOQ /'OO

< 1 + Y  9edxP r [ I °  > x ] d x  = 1 + T \ 0e9xP r [ I °  > x ]d x
Jo Jo

< i  + r

< 1 + T

T rx° r 00
9e0xP r [ I °  > x ]d x  + q 9edx2ote~^xdx

fJo deexdx  + 2 a 0  w-mx0ue a x + {p _ Q)e = 1 + Tb

(3.15)
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w ith b = e9x° - 1  + e(0~P)x°, where the second inequality follows from i f  <st 1°,

fo r all t. Thus, w ith a -  - i p(9) > 0:

0 < lim  P r[L \  > n (T )  or I 2 > n(T)  or .. .L ;- i > n (T )]

where the last inequality follows from (3.14) and (15) and the last equality from 

(3.11). This proves (3.12), hence (3.10) and (3.9).

It remains to he shown that when t  = rj[(log T)^], w ith £ > 1, the progressive in ­

terval heuristic runs in  0(JVT1+^ log T) time, when each interval problem is solved w ith 

the above described b&b method. The discussion in Section 2.5 shows that evaluation 

of any node of a b&b tree requires 0 (N t log t )  time. Since this needs to be done at most 

2 T times to evaluate the complete tree, and since r  = O(^) interval problems need to 

be solved, the complexity bound follows immediately. ■

The same simultaneous (almost sure) asymptotic optimality and polynomial com­

plexity can be obtained for the above (EH)-heuristic, under the same choice fo r the 

interval increment t  as in (3.11). The complexity of this (EH)-heuristic is 

0(T log log T / (log T)^~]) larger than that of the (SP)-heuristic. Nevertheless, complexity 

grows only linearly w ith N  and (only) slightly faster than cubically w ith T:

T —00
l - i

< lim  Y  P r [L( > n(7’)]
T — co j

< lim  { ( /  -  1) e xp {-a n (T )} (1 + Tb)
T -*  00
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Theorem 3.2 Consider an (EH)-heuristic with t  = r) f (log 7 ')^j for some r) > 0 and t, > 

1. The heuristic is asymptotically optimal a.s. and can be designed to run in

0(NT2+^ l{ \ogT)^~ l ) time.

Proof: The proof is analogous to that of Theorem 3.1, w ith only the following mod­

ifications: The Phase II transformation should modify the composition of the reserve 

stock at the end of periods T i,T 2 , . . .  ,T j= i  to that prevailing at the end o f the f-Xh 

iteration of the (EH)-heuristic. (In the case of the (EH)-heuristic, this composition may 

change in  subsequent iterations). As shown in  Theorem 2.2(b) in  Chapter 2, a third 

Phase transformation is necessary to obtain a solution which is is among the ones con­

sidered by the (EH)-heuristic, but this third transformation only reduces the cost value. 

The derivation of the complexity bound is again analogous, except that the evaluation 

of a single node in  one of the b&b trees now requires 0(JVT log T) time. ■

3.4 Products with limited shelf life

Thus far, we have assumed that items can be kept in  stock for an unlim ited amount 

of time. In this Section, we address the situation where the shelf life of each item is 

bounded by an (integer) constant A, perhaps because the items are perishable. We refer 

to the survey paper by Nahmias (1982) for a review of inventory models w ith lim ited 

shelf lives. W ithin the context of dynamic lo t sizing models, the complication o f a 

fixed shelf life has not been addressed until Hsu (2000) who showed that the single 

item uncapacitated model can be solved in O(T2) time. (For this case, Hsu addresses, 

in  addition, more general life time models and more general order and inventory cost
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functions then those used in  (P).)

We show that, in the presence of a lim ited shelf life, almost sure asymptotic optimal­

ity  of (SP)- and (EH)-heuristics can be established under conditions even more general 

than (A), for example:

(A t)  The sequence {(Dt,C t)} is strongly ergodic, i.e. for any Lipschitz continuous 

function g  : R — R, there exists a constant G such that

1  T
lim  -  X 0 ((D t,C t);(D t+i,C t+i);(D t+A,C t+A)) = G a.s. (3.16)
T~'x T  i

r  -i rr- -| ,~r'

Moreover, 0 < p = lim-/--* f  -  limr-oo j  Z t=i D t (a-s.).

The condition is related to that of asymptotic mean stationarity, see e.g. G ray (1990). 

Beyond the case of i.i.d. aggregate capacity and demand pairs considered under (A), 

(A t ) encompasses a large variety of processes, for example:

(I) {(D t , C()} is stationary and ergodic

(II) {(Dt,Ct)}  is a so-called ‘world driven’ process. Here, the distribution of (Dt ,Q ) 

is time invariant but it  depends on the state of the world Wt, w ith {Wt} a Markov 

process w ith a finite or countable state space which is ergodic (i.e., the Markov 

chain has a single positive recurrent set of states). Thus the conditional dis­

tributions { (D t ,Ct )\Wt = w\  are time-invariant. Moreover, l i m t _oo Wt = W and 

lim t-oo(Dt,Ct) = ((D,C)\W). See Zipkin (2000) for a detailed discussion of the
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use of world driven demand processes in  inventory models.

(Ill) A th ird  type of process satisfying (A?) and modeling different types of intertem­

poral correlations, is where the process {(D t ,Ct )} is autoregressive, e.g. a stable 

ARMA(p,q) process, i.e.

p q

Dt = X  <PiD t - i  + X  V j£t - j  + V t (3.17)
i= 1 j = 1

P ■?
Ct = '£i <piCt- i + '£ i i p j i t - j  + i t  V t (3.18)

i= l J= 1

where {etJ^f-oo and [e t}t+=“  co are independent sequences of i.i.d. random vari­

ables w ith finite second moments. A sufficient condition for the processes to be 

stable is that the characteristic polynomials 4>(z) = <Pizl [^ (z )  = Z f= i ^Piz'J

and Y(z) = Z i= i tpiZ1 [Y(z) = Z^=i d 'iz 'l do not have common (complex) roots

and that the roots of the former are outside the unit circle.

Lemma 3.1 Assume the process {(D t ,Ct )} is o f  type (I)-(III). Then {(Dt ,Ct)} is strongly 

ergodic.

Proof: (I) Immediate, see e.g. Proposition 6.31 in  Br e im a n  (1992).

(II) The process { (PVt, Wt+ i , . .. , Wt+A)} is a Markov process, whose Markov chain has 

a single positive recurrent set of states, i.e. there exists a state of the process w ith 

a finite expected recurrence time. Almost sure convergence of the lim it to the le ft 

of (3.16) then follows from the renewal reward theorem.

(III) It suffices to prove strong ergodity of {Dt } and {Ct} separately. We prove the
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former; the proof of the latter is identical. Since the ARMA process is stable, 

there exists a constant 0 < a < 1 such that Dt = aj et-j< w ith < a->, see 

e.g. Sa m o r o d n it s k y  and Ta q q u  (1994). The sequence {Dt } is non-stationary. Let 

D® d= ZJLo (Xj et - j ■ {D®} is clearly stationary and it  is well known to be ergodic. 

Fix a function g  : KA — IR that is Lipschitz continuous. By the argument fo r (I), 

there exists a constant G such that lim ^oo y Z t= i 0(£)t<Dt+1 > ■ ■ ■ ’ D t+\) = G a.s.. 

To show that

limr-oo j  'L j= ig (D t ,D t+ i ........ Dt+a) = G a.s., as well, it  suffices to show that for

any 5 > 0,

1 T
I lim -  £ l g { D t,D t+i , . . .  ,D t+A) - g ( D l . . .  ,D°+A)]| < 5  a.s. (3 .19)

r - ° °  1 t = l

Since for any integer n  >  1,

1 T
I lim  -  'Z [g (D t,D n .  i ........Dt+A) ~ g(D?,D?+ l l ... ,D?+a)]\t —oo i t =n

i T
< lim -  X  \ g ( D t , D t+i , . . .  , D t+A) - g { D ° t , D Qt+i  D?+a)I

T ~ °°  T  t=n

it  follows from the Lipschitz continuity of g(-)  that it  suffices to show, for any 

<5 > 0, that an integer n  > 1 exists such that

lim r-oo y  Xj=n  ID t ~ D °\ < lim r-oo y  l j = n 1.7=t+i

< lim y-*  y  Z L n l 7=t+1a J'|et-jl = limr-oo y l f =na t+1 X j=0 aJ|e_j_i l

< limy-.oo Z t = n  at+1  { lim r ti £ j =0 r j \ e - j - i \ }

= limy^oo y Z f=na £ + 1  {UniM-oa Z > o  le- j - i l }  < a " +1£|e| < 6  a.s.
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where the equality follows from the Abel-Tauberian theorem and the next to last 

inequality from the law of large numbers. (Since the random variable e has a 

finite second moment, E |e| < oo.) The last inequality is satisfied fo r all n  >

Llog(p/£|e|)/ loga j. ■

To pursue the algorithm’s performance analysis, note that / (°, the m inimum re­

serve stock at the end of period t is now given by:

I?'f  = max Y  (Dr - C r )  (3.20)
t + l<s<t+A r Z t “+ \

instead of (3.1). (Using repeated substitutions in  (3.1), note that 1 ^  = I® when 

A = oo) In other words, assuming that a feasible solution exists, to ensure that a 

solution for the first t periods [ 1 , . . .  , t ]  can be extended into a feasible solution 

over the complete horizon [1 ,... , T], it  is necessary and sufficient that It > 1 ^ .  

(If It < If '^ , aggregate demand in  the periods t + 1 ,... ,s (for some t + 1 < 5  < t + A) 

exceeds (X r= t+ i Cr  + It), so demand in [ t  + 1 , 5 ] can not be satisfied even when 

placing a fu ll capacity order in each of the periods of this interval. A t the same 

time, i f  I t > 1 ^ ,  the first period whose demand can not be met, has a period 

index greater than t + A and any additional inventory at the end of period t is of 

no use to meet this demand.)

Theorem 3.3 Assume items have a fixed shelf life time A > 0 and ( A ^ ) holds.

(a) Consider an (SP)-heuristic with r  = r) \ log T \ for some rj > 0. The heuristic is 

asymptotically optimal, a.s., and it can be designed to run in 0 ( N 2T2 log T(logN  +
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log log T)2) time as well.

(b) Consider an (EH)-heuristic with t  = r) [logT] for some r} > 0. The heuristics is 

asymptotically optimal, a.s., and it can be designed to run in O ( n 2 T4 (log N + log T + log2 JV/ 1< 

time as well.

Proof: The proof is analogous to that of Theorem 3.1 and 3.2 and is, in  fact, 

simpler.

I
limr-oo z yZ = 0 a.s., is verified as in  the proof of Theorem 3.1. Moreover, it  

was shown there that for liinr-oo -z" r z' = 0 a.s., it  is sufficient to verify that (3.10)

1 T Q f
holds. Since I £ < A, (3.10) reduces to showing that lim ^oo j  Z t= i V  converges 

to a constant a.s.. This, however, follows from (A-0, since, by (16), 1 ^  is a Lips­

chitz continuous function of {(D t+i, Ct+ i), (Dt+2, Ct+2), ■ ■ ■ , (Dt+A, Ct+\)}.

We now verify the complexity bounds. Under a fixed life time, the minimum cost 

network flow problem to be solved in  each node of the b&b-trees, associated w ith 

the different interval instances, now needs to be solved by a standard method, 

rather than the Ah u ja  and H o c h b a u m  (2004) method. The best strongly poly­

nomial time algorithm to solve minimum cost network flow problems is due to 

O r l i n  (1989). The network flow model has a source, a sink and two sets of nodes; 

the first set has a node for every period and the second one has a node fo r every 

period /  item combination. Thus, the model has O (N t)  nodes and O(Nr) arcs in 

the (SP)-heuristic and O(NT) nodes and arcs in the (EH)-heuristic. O r l i n ’s  method 

solves the problem therefore in 0(lV2 T2 log2 N t )  and 0(N2T2 log2 NT), respec­

tively. Since J = T / t  interval instances are solved and since in  each, in  the worst
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case, all 2T nodes of the b&b tree need to be evaluated, the complexity bounds 

follow readily.

■
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Chapter 4

Dynamic Pricing Strategies for 

Multi-Product Revenue Management 

Problems

4.1 Introduction

Consider a firm  that owns a fixed capacity of a certain resource that is consumed in 

the process of producing or offering multiple products or services, and which must 

be consumed over a finite time horizon. The firm ’s problem is to maximize its total 

expected revenues by selecting the appropriate dynamic controls. We w ill consider two 

well studied problem formulations. In the first, the firm  is assumed to be a monopo­

list or to operate in  a market w ith imperfect competition, and thus to have power to 

influence the demand for each product by varying its price. In this setting, the firm ’s

68
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problem is to choose a dynamic pricing strategy for each of its products in order to 

optimize expected revenues. In the second situation, prices are assumed to be fixed ei­

ther by the competition or through a higher-order optimization problem, and the firm ’s 

problem is now to choose a dynamic capacity allocation rule that controls when to ac­

cept new requests for each of these products. In the sequel, these two problems w ill be 

referred to as the ‘dynamic pricing’ and ‘capacity control’ formulations, respectively. 

Revenue management problems of that sort originated in  the late 1970’s in  the context 

of the airline industry, and have since been successfully introduced in  a variety of other 

areas such as hotels, cruise lines, rental cars, retail etc. For example, the firs t of these 

problems may arise in  the retail industry, while the second one tends to be associated 

w ith the airline industry (although there are examples of airlines that practice revenue 

management through a dynamic pricing policy as well).

Both of these problems have been studied quite extensively in  the revenue manage­

ment literature, in  each case highlighting the structure of the optimal controls, propos­

ing near-optimal heuristics, and evaluating their performance in  extensive numerical 

studies fo r both stylized examples as well as real-life applications. This paper illus­

trates how these two problems can be reduced to a common formulation and thus be 

treated in  a unified manner, and explores some of the consequences of this formula­

tion. Broadly speaking this is done as follows: Consider a firm  that owns capacity o f a 

single resource and offers multiple products, and suppose for now that the aggregate 

rate at which capacity is consumed is given. One can then compute the vector of prod­

uct prices or capacity controls in each case in  order to maximize the instantaneous 

expected revenue subject to the constraint that the aggregate capacity consumption
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equals the aforementioned rate. This is akin to the basic microeconomics problem of 

resource allocation subject to a budget constraint. Its solution, which in  some cases can 

be obtained in  closed form, defines an aggregate expected revenue rate as a function of 

the capacity consumption rate, and identifies the optimal way of translating the latter 

into a vector of product-level controls. One can now reformulate both the ‘dynamic 

pricing’ and the ‘capacity control’ problems as ‘single resource, single product’ pricing 

problems, where the firm  controls the instantaneous resource consumption rate and 

where revenues are accrued according to appropriate aggregate revenue function. Pric­

ing and capacity decisions are then extracted from the optimal capacity consumption 

rate in  the manner described above.

This formulation constitutes the main modelling contribution of the Chapter, which 

then proceeds to explore some of its theoretical and practical implications in  dynamic 

pricing and capacity control revenue management problems. Specifically, we show that 

the multi-product dynamic pricing problem introduced by Galleg o  and v a n  Ry z in  

(1997) and the capacity control problem of Lee and Hersh  (1993) can be recast w ith in 

this common framework, and be treated as different instances of a single-product pric­

ing problem for appropriate concave revenue functions (Propositions 4.1 and 4.2). This 

highlights the common structure of the pricing and capacity control problems and al­

lows us to treat both in  a unified framework. This, of course, recovers well-known 

structural results regarding the monotonicity properties of the value function and the 

associated controls (see Propositions 4.3 and Corollary 4.2) that were previously de­

rived in  the literature while studying each of these problems in isolation, see, e.g., 

Galleg o  and v a n  Ry z in  (1994, 1997), Lee and Hersh  (1993), La u t e n b a c h e r  and
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St id h a m  (1999), Zh a o  and Zh e n g  (2000), and the recent book by Ta l l u r i and v a n  

Ry z in  (2004a). Moreover, Corollary 4.1 establishes that the optimal multi-product pric­

ing policy has a certain monotone and nested structure. Although our analysis is done 

in  a stationary setting, most of our results extend to allow for non-stationary demand 

models, in  which case the associated dynamic pricing single-product problems are of 

the form  studied by Zh a o  and Zh e n g  (2000).

A  similar type of demand aggregation appeared in  T a l l u r i  and v a n  R y z i n  (2004) 

while analyzing a capacity control problem for a system where customer behavior is 

captured through a discrete choice model. Demand aggregation techniques have been 

exploited in  the past in the numerical solution of the dynamic programs associated with 

these revenue management problems. Finally, similar ideas o f demand aggregation 

arise in the context of ‘equivalent workload formulations’ in stochastic network theory; 

see Ha r r is o n  and v a n  M ie g h e m  (1996) for background, and Mag laras  (2003b) for a 

recent application of this idea in  the context of a jo in t pricing and scheduling problem.

This new formulation leads to several qualitative and quantitative insights. The first 

concerns the derivation of simple pricing and capacity control heuristics. Specifically, 

both multi-product formulations are reduced into dynamic pricing problems for single­

product models of the type studied by Ga llego  and v a n  Ry z in  (1994). Based on their 

analysis this implies that a static pricing heuristic is optimal for the deterministic and 

continuous (fluid) approximation of the underlying problems, and asymptotically opti­

mal in  an appropriate sense for the original problems. This was already observed by 

Galleg o  and v a n  Ry z in  (1997), but their characterization of that policy in the m u lti­

product setting was implicit. Our reduction of the multi-product problem to an ap­
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propriate single-product one leads to a closed-form characterization of that fixed-price 

heuristic (see Proposition 4.4); see also the review article by Bit r a n  and Ca l d e n t e y  

(2003) for a discussion of deterministic multi-product pricing problems. In contrast 

to the dynamic programming analysis discussed above, the flu id formulation of these 

problems allows us to consider a more general class of models where products may 

differ w ith respect to their capacity requirements. Based on the solution of the flu id 

formulation we propose three heuristics: (i) a static pricing heuristic; (ii) a static pricing 

heuristic applied in  conjunction with an appropriate capacity allocation policy; and (iii) 

a ‘resolving’ heuristic that re-evaluates the flu id policy as a function of the current state 

and time-to-go (which is derived by expressing the flu id solution in  feedback form).

The first of these heuristics was suggested by Gallego  and v a n  Ry z in  (1997). Once 

prices are fixed, the firm ’s problem has been reduced to one of capacity control, of the 

type analyzed in Lee and Hersh  (1993), which motivates the second heuristic. Policies 

that combine static prices with capacity controls as in (ii) have been suggested in  other 

papers such as McGil l  and v a n  Ry z in  (1999), Feng  and X ia o  (2004), and Lin  e t . a l .

(2003). Finally, the ‘resolving’ heuristic (iii) is widely applied in  practice, but to the best 

of our knowledge has not been analyzed theoretically thus far. The only exception was 

the negative result o f Cooper  (2002) that illustrated through an example that resolving 

may in  fact do worse than applying the static fluid policy.

Subsection 4.4.2 establishes that all three heuristics achieve asymptotically optimal 

performance under flu id scaling, i.e., in  the spirit of Gallego  and v a n  Ry z in  (1997) 

and Cooper  (2002) (Propositions 4.5 to 4.7). These results show that the phenomenon 

demonstrated in  Cooper’s example does not persist in problems w ith large capacity
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and demand, where in fact resolving achieves the asymptotically optimal performance. 

Moreover, the numerical results of Section 4.5 illustrate that the dynamic heuristics (ii) 

and (iii) tend to improve the firm ’s performance.

The second insight is structural and offers a partial characterization of good pricing 

and capacity allocation policies. The formulation advanced in  this paper and specifi­

cally the subproblem of translating a capacity consumption rate into a set of product- 

level controls that jo in tly  maximize instantaneous revenue, defines an efficient frontier 

fo r the firm ’s pricing and capacity control strategy. This captures in a tractable way the 

interactions between products due to cross-elasticity effects and the jo in t capacity con­

straint. The idea of an efficient frontier has also appeared in  Ta l l u r i and v a n  Ry z in

(2004) in  the context of a capacity control problem for a model w ith customer choice 

among products, and in  Feng  and X ia o  (2000, 2004) while studying pricing problems 

w ith a predetermined set of price points; the latter set of papers uses the term maxi­

mum increasing concave envelope.

While the main emphasis of this paper is not computational, it  is worth noting that 

the control dimension reduction presented in this paper may lead to computational 

simplifications in  cases where the subproblem of inferring the optimal demand rates 

given an aggregate consumption rate is solvable in  closed-form. While this is not gen­

erally true, it  does admit a simple solution in cases such as the linear demand model 

and the multinomial logit model (both are reviewed in  Section 4.5), and it  also leads to 

a simple characterization of the revenue function in  the capacity control formulation. 

Moreover, it  leads to algorithmic and computational simplifications in  the case where 

there is a fixed set of price points for each product, as in the model studied in Feng
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and X ia o  (2004).

Finally, we extend this formulation to the network case. The same decomposition 

in  (a) choosing the aggregate resource consumption rates and then (b) translating these 

decisions to a vector of product prices still holds. As expected, the complexity of 

each of these steps increases in the network setting. However, the structural insights 

gleaned by this problem formulation provide a promising direction to follow in devel­

oping efficient network controls.

The remainder of the paper is structured as follows. This section concludes w ith 

some additional comments on the related literature. Section 4.2 describes the model 

and the associated problem formulations. Section 4.3 demonstrates the reduction of 

the dynamic programming formulations to that of a single-product pricing problem, 

and derives some of its structural properties. Section 4.4 discusses several insights and 

extensions that hinge on the previous results, and Section 4.5 provides some numerical 

illustration of our results and offers some concluding remarks.

The papers by El m g h r a b y  and Ke s k in o c a k  (2002), Bit r a n  and Ca l d e n t e y  (2003), 

and M cGil l  and v a n  Ry z in  (1999), and the book by Ta llu r i and v a n  Ry z in  (2004a) 

provide comprehensive overviews of the areas of dynamic pricing and revenue manage­

ment. The modelling framework adopted in this paper closely matches that of Galleg o  

and v a n  Ry z in  (1994,1997), and, as in their work, we also partly focus on deterministic 

and continuous-dynamics (fluid) approximations of the underlying discrete problems 

to derive simple heuristics for the multi-product revenue management problems. See 

also Kle yw e g t  (2001) for a flu id model approach to multi-product network revenue 

management problem. Standard references on revenue management w ith capacity con­
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trols are L e e  and H e r s h  (1993), B r u m e l l e  and M c G i l l  (1993) and L a u t e n b a c h e r  and 

S t i d h m a n  (1999).

4.2 Single Resource, Multi-Product Model

This section poses the multi-product dynamic pricing and capacity control problems. 

We start w ith the former, which follows the model of G a l l e g o  and v a n  R y z i n  (1997), 

and then provide the necessary changes to formulate the latter, which is the model 

analyzed by L e e  and H e r s h  (1993).

4.2.1 Dynamic pricing model

Consider a firm  that is endowed w ith C units of capacity of a single resource that is 

used in  producing or offering multiple products or services, indexed by i  = 1, . . .  , n. 

Each un it of product i  consumes one unit of capacity, and for simplicity we assume 

that C is integer valued. There is a finite horizon T over which the resources must be 

used, and capacity cannot be replenished up to that time. The firm  is either a monop­

olist or is assumed to operate in  a market w ith imperfect competition, and, in that, 

has power to influence the demand for each product by varying its menu of prices. Let 

p (t)  = [p i ( 0 , . . .  ,p n ( t )] denote the vector of prices at time t. The demand process 

is assumed to be n-dimensional non-homogeneous Poisson process w ith rate vector A 

determined through a demand function A (p it ) ) ,  where A : T  -- £, T  £ is the set of 

feasible price vectors, and £ = {x  > 0  : x  = A(p), p e T]  ^  K+ is the set of achievable 

demand rate vectors. We assume that £ is a convex set. A simple interpretation o f the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

76

demand model in  the single product case is as follows: i f  the total arrival rate of poten­

tia l customers is A, and each customer has an independent identically distributed (IID) 

reservation price (i.e., maximum price they are willing to pay) fo r the product drawn 

from  some distribution F, then customers that have reservation prices > p choose to 

buy the product and A(p) = A(1 -  F(p)). Following Ga l l e g o  and v a n  Ry z i n  (1994, 

1997) we consider regular demand functions that satisfy the following requirements. 

In the sequel, x '  w ill denote the transpose of any vector or matrix x  (the use of T is 

reserved for the time horizon), and for any real number y ,  y + := max(0,y ).

Assumption 4.1 A demand function is said to be regular i f  it is a continuously differen­

tiable, bounded function, and: (a) for each product i, A((p) is strictly decreasing in p it

(b) lim Pi_oo Af(p) = 0 (i.e., consumers have bounded wealth), and (c) the revenue rate 

p'A(p) = Z f = i  PiAj(p) is bounded for a l lp  e T  and has a finite maximizer p.

Note that this class of demand functions incorporate product complementarity and 

substitutions effects. For ease of exposition, we assume that the demand function is 

stationary. The extension to a non-stationary demand model can be done along the 

lines o f Ga l l e g o  and v a n  Ry z i n  (1994, 1997) and Zh a o  and Zh e n g  (2000). Also, 

this demand model assumes that customer decisions only depend on the current price 

vector and not on past and/or future pricing decisions. A more general model would 

allow customers to learn the firm ’s pricing policy and adjust their actions accordingly, 

and thus incorporate the strategic interaction between the firm  and the customers’ 

collective behavior. While this may seem appealing, it  leads to a complicated game- 

theoretic analysis, and is often avoided both in  the revenue management literature and
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in  practice. See Vu lc a n o  e t . a l . (2002, § 4.3) for a discussion of this issue with 

appropriate pointers to the literature.

We assume that there exists a continuous inverse demand function p (A), p : £  — T, 

that maps an achievable vector of demand rates A into a corresponding vector of prices 

p (A). This allows us to view the demand rate vector as the firm ’s control, and once 

this is selected infer the appropriate prices using the inverse demand function. The 

expected revenue rate as a function of the vector of demand rates, A, is defined by 

R(A) := A'p(A). In the sequel we w ill assume that the revenue rate functional R(-) is 

continuous, bounded and strictly concave.

Example: Under a linear demand model, the demand for product i is given by

Ai(p) = A i -  bupi -  Y. b ijP j,
j * i

where A t is the market potential for product i  and blu b ij are the price and cross-price 

sensitivity parameters. This can be expressed in  vector form as A ip )  = A -  Bp, fo r the 

obvious choice of A ,B. The inverse demand function is then given p(A) = B ~ 1 (A -  A), 

and the revenue function is given by R(A) = A 'B "1 (A -  A). Assumption 1 requires that 

bu > 0 for all i. To ensure that B_1 exists and the inverse demand function is well 

defined, and that the revenue function is concave we further require that either bu >

\ b ji\ or bu > X j * i  I bij | for all i; both conditions guarantee that B is invertible 

and that its eigenvalues have positive real parts (see H o r n  and J o h n s o n  (1994, Thm. 

6.1.10). If  the products are substitutes (by < 0 for all j  *  i), the first condition reduces 

to ~Zj b ji > 0, which implies that an increase in Pi leads to a reduction in the total
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demand for all products. Alternatively, the second condition says that the effect of a 

marginal increase in pi on the demand for product i  is bigger than that of a marginal 

increase on the prices of all other products.

The problem that we address is roughly described as follows: given an in itia l ca­

pacity C fo r that resource, a selling horizon T, and a demand function that maps the 

menu of prices into a set of demand rates for each product, the firm ’s goal is to choose 

a non-anticipating dynamic pricing strategy for each product in  order to maximize its 

total expected revenues. The restriction to non-anticipating policies implies that the 

decisions at time t can only depend on the current state of the system as well as the 

time history up to time t, and not on future events.

We assume that the salvage value of remaining capacity at time T is zero. (Oth­

erwise, at least in  the case where the salvage value per unit of capacity at time T 

is constant, one could modify the objective function to be total expected revenue 

in  excess of the salvage values.) We w ill adopt a discrete-time formulation, which 

assumes that time has been discretized in  small intervals of length 5t, indexed by 

t = 1 ,... , T, such that IP(product i  arrival in  [0, <5t]) = Aj<5f + o{5t) for all products i, 

and IP(product i  and j  arrivals in [0 ,8t ] )  = A i \ j { 5 t ) 2 + o{ (5t )2), where o(x)  implies 

that o ( x ) / x  — 0 as x  — 0. With slight abuse of notation, in  the sequel we w ill write 

Aj in  place of A,5t; i.e., A* w ill not refer to the rate of the underlying Poisson arrival 

process, but to the probability that a product i  request occurs in each time interval. We 

w ill refer to A, as the demand or the buying probability for product i, interchangeably. 

Hence, the corresponding demand random vector for period t, denoted by §(t; A), is 

Bernoulli w ith probabilities A that are controlled by the vector of posted prices, and
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P(§i(t) = 1) = Ai (p( t ) )  and P(§i(t) = 0) = 1 -  Ai (p( t ) )  for all products i. As stated 

above, we w ill treat the demand rates Aj as the control variables and infer the appro­

priate prices through the inverse demand relationship. The discrete-time formulation 

of the dynamic pricing problem of Ga l l e g o  and v a n  Ry z i n  (1997) is as follows:

where e is the vector of ones of appropriate dimension and ‘a.s.’ stands for almost 

surely.

4.2.2 The Single-Resource Capacity Control Problem

The second problem that we w ill consider is the one studied by Le e  and H e r s h  (1993) 

that takes the product prices as exogenously fixed and strives to optimize over the 

capacity allocation decisions. In more detail, the price vector p is fixed a priori, and 

this also fixes the corresponding vector of demand rates A = A(p). In the context of 

this problem and without any loss of generality we w ill assume that the products are 

labelled in  such a way that pi  > p 2 > ■ • • > pn- The firm  has discretion as to which 

product requests to accept at any given time. This is modelled through the control 

Ui ( t ) fo r each product i, which is equal to the probability of accepting such a request 

at time t. It is customary to assume that the firm  is ‘opening’ or ‘closing’ products 

(or fare classes), thus leading to controls Ui(-) that take the values of 0 or 1, but this 

need not be imposed as a restriction. A  more general class of controls could allow the

max i  E X  p(A(t) ) '5( t ;A)
{A(t>, t = i , . . . ,n  “

max IE  ^  P(A(t )) '§(t;  A) : ^  e'§(t; A) < Ca.s. a n d A ( t ) e £ V t k
, t=l,„. ,7"} *=1

(4.1)
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firm  to flip  a coin upon arrival of a product i  request with probability of success given 

by U i ( t )  and make the accept/rejection decision accordingly. The dynamic capacity 

control problem can be formulated as follows:

where u \  above denoted the vector w ith coordinates UiAt.

4.3 Analysis of the pricing and capacity control problems

This section describes how to reduce (4.1) and (4.2) into dynamic optim ization prob­

lems where the control is the (one-dimensional) aggregate capacity consumption rate. 

Subsequently, we derive some structural properties for these two problems through a 

unified analysis.

4.3.1 Dynamic programming formulation of the pricing problem

Consider the dynamic pricing problem posed in  (4.1). Let x  denote the number of 

remaining units of capacity at the beginning of period t,  and V (x, t )  be the expected 

revenue-to-go starting at time t  with x  units of capacity left. Then, the Bellman equation 

associated w ith (4.1) is:

max
{u(t ) , t  = 1 T)

(4.2)

n
V (x , f )= m a x  j  ^  A; [pi(A) + V(x  -  1, f + 1)] + (1 -  e'A) V(x,  t  + 1) L  (4.3)
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with the boundary conditions

V( x , T  + l )  = O V x  and V (0 ,t) = 0 V t . (4.4)

Letting AV(x, t) = V (x, t + 1) -  V (x  -  1, t + 1) denote the marginal value of one unit 

of capacity as a function of the state (x, t ), (4.3) can be rewritten as

The gist of the proposed solution approach is to rewrite (4.5) in  terms of the one­

dimensional aggregate rate of capacity consumption defined by p := Y f=1 A;. We first 

consider the maximum achievable revenue rate subject to the constraint that all prod­

ucts jo in tly  consume capacity at a rate p, which is given by the solution to the following 

parametric optim ization problem

Note that (4.6) is concave maximization problem over a convex set, and its solution is 

readily computable, often in  closed form (examples are given in  Section 4.5). Moreover, 

Rr {■) is a concave function and satisfies the conditions of Assumption 1, and Rr (p) /p  

is the optimal ‘average’ price per unit of capacity, which is interpreted as an inverse 

demand function for this aggregate model. The unique vector of demand rates that 

achieves that optimum w ill be denoted by Ar (p). Let % := {p : £ f= i A; = p, A e £}  be 

the set of achievable capacity consumption rates. Then:

V(x,  t) = max R(A) -  Y  AjAV(x, t) j- + V (x, t + 1)
i  /- r  *—* I

(4.5)

Rr (p) := max {R(A) : = P, A e £} .
A

(4.6)
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Proposition 4.1 The dynamic pricing problem (4.1) can be reduced to the dynamic pro­

gram

V(x,  t) = max {Rr (p) -  pAV(x,  t ) }  + V(x,  t + 1), (4.7)
pe'R

and the boundary condition (4.4) expressed in terms o f the one-dimensional aggregate 

consumption rate. In particular, i f  p* (x ,  t) denotes the optimal solution o f (4.7) and (4.4) 

and A* (x, t) and p* ( x ,  t) denote the optimal demand rate and price vectors associated 

with (4.1), then,

\ * ( x , t )  = Ar (p* (x , t ) )  and p*  (x , t )  = p ( \ r  (p* (x , t ) ) ) .  (4.8)

Next, we show how the capacity control formulation can also be reduced to a prob­

lem that resembles (4.7), and then proceed to analyze the structure of both problems 

in  an unified manner.

4.3.2 DP formulation of the capacity control problem

Using the notation established above, the Bellman equation associated w ith (4.2) is

V(x,  t) = max
M j e [ 0 , l ]

Y, A tilt [p j + V ( x - l , t  + l ) ]  + ( l -  u 'A) V(x,  t + 1)
i = l

(4.9)
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with the boundary condition (4.4), which using the marginal value of capacity AV be­

comes

V (x, t) = max \ XiUipt  -  u'AAV(x,  t) r + V(x,  t + 1). (4.10)

Suppose products are labelled such that p\  > p 2 ^  ■ ■ ■ S: Pn- Observe that p = u 'A 

and define

Ra(p) = max j  UiAiPi : u 'A = p, u t e [0,1]
u U=1 j

to be the maximum instantaneous revenue rate when the aggregate capacity consump­

tion rate (or probability of a sale at that time) is given by p. Let u a{p) be the control 

that attains that maximum. Using the structure of the knapsack problem that defines 

Ra(-) we get that

Ra(p) = m i n  Ci + pip  and ug(p) = m in ( (p ^ ' A,) , l )  , (4.11)

where c\ = 0 and q  = Xk<i Ak(Pk -  Pi), and for any x  e R, x + := m ax(x,0). That is, 

the optimal solution starts from offering product 1 (with the highest price) and keeps 

adding more products until the total probability of a sale in period t becomes equal 

to p. In practice, of course, one would always set u f  (p) = 1 for all p > 0, i.e., it  is 

never optimal to close the highest-fare class. The ‘average’ expected selling price is 

Ra(p) /p = m in jC j/p  + Pi, which is, of course, decreasing in  p, and Ra(-) is concave. 

Combining these results, (4.2) can be expressed as a dynamic problem in terms of p as
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follows:

V(x , t )  = max {Ra(p) -  pAV(x,  t ) } + V(x,  t + 1). (4.12)
0 < p < S ",!  Af

subject to the boundary condition (4.4). This structural result is summarized below.

Proposition 4.2 The capacity control problem (4.2) can be reduced to the dynamic pro­

gram (4.12) and (4.4) expressed in terms o f the one-dimensional aggregate consumption 

rate p. In particular, i f  p * ( x , t )  denotes the optimal solution o f (4.12) and (4.4) and 

u * ( x , t )  denote the optimal policy fo r (4.2), then u * ( x , t ) = u a(p* (x , t ) ) .

This last result was also derived in  T a l l u r i  and v a n  Ry z i n  (2004), while consider­

ing the capacity control problem for a model w ith customer choice. While their model 

and emphasis was different than ours, one of their key findings was also that the opti­

mal policy in  multi-product settings can be expressed in  terms of the aggregate proba­

b ility  of a sale and the associated expected revenue, i.e., p and Ra(p).

4.3.3 A unified analysis of the pricing and capacity control problems

The sim ilarity of the dynamic programs for the pricing and capacity control problems 

highlights their common structure and allows them to be treated in  a unified manner. 

For both (4.7) and (4.12) the optimal control p*  (x, t ) is computed from

p * ( x , t )  = argmax {R(p) -  pAV(x , t ) } ,
peR
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where R(-) is any concave increasing revenue function. Using the properties o f R(-) 

one gets that p * ( x , t ) is decreasing in AV(x, t ) ,  which using a backwards induction 

argument in  t gives that AV(x,  t ) is decreasing in  x  and t. These standard results for 

single-product dynamic pricing problems are summarized below; a proof can be found 

in  T a l l u r i and v a n  Ry z in  (2004, Prop. 5.2 Ch. 4).

Proposition 4.3 T a l l u r i  and v a n  R y z i n  (2004, Prop. 5.2 Ch. 4) For both problems 

defined in (4.1) and (4.2) we have that:

1. p * ( x , t )  is decreasing in the marginal value o f capacity AV (x , t), and

2. AV(x,  t) is decreasing in x  and t.

Next, we specialize these results to the dynamic pricing and capacity allocation 

problems. We first consider the dynamic pricing problem and for illustrative purposes 

focus on the case where the products are non-substitutes. That is, the demand for 

product i  is only a function of the price for that product pu In that case, the Lagrangian 

associated w ith (4.6) is given by L(A,x , y )  = R(A) + x (p  -  Td=\ A;) -  y ' A, and the 

associated first order conditions are given by 3R(A)/0A; = x  + y u for some x  > 0 and 

y t < 0 w ith y t = 0 i f  Aj > 0. It is easy to show that x  is decreasing in p (i.e., the 

shadow price for the capacity consumption constraint decreases as the associated rate 

p increases), and that A[ (p) is decreasing in  x . This is summarized below.

Corollary 4.1 Consider the problem specified in (4.3) and (4.4) and further assume that 

the products are non-substitutes, i.e., A i ( p )  = A x( p i )  fo r all i. A *  (x, t) is non-decreasing 

in p * (x ,  t) (and non-increasing in AV(x,  t)).
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A similar result can be obtained when products are substitutable provided that the 

demand model satisfies certain conditions analogous to the ones given for the price 

sensitivity matrix B in  §4.2.1 when describing the linear demand model example.

Finally, we specialize these results to the capacity control problem to recover some 

well known structural properties of the optimal policy, see, e.g., Lee and Hersh  (1993). 

Our derivation based on the aggregate control offers some new in tu ition as to why 

they hold. To start with, the optimal control p * ( x , t )  is the solution to the following 

optim ization problem

max rain ct + (p i -  AV(x, t ) )p.  
o^zr-iAi ‘

Let i *  (x, t) = m ax{i > 1 : pi  > AV(x,  t ) }. Then, by inspecting the form of the piecewise 

linear objective function involved in the calculation of p* (x ,  t) we get that

n
p * ( x , t )  = Aj.

i < i *  (x, t)

That is, the solution is ‘bang-bang’ in  the sense that the form of the optimal control is 

such that u*  (x, t) is 0 i f  i  > i *  (x, t) and 1 i f  i < i *  (x, t). In addition, from Proposition 

4.3 part 1 we see that i*  (x, t) is decreasing in  the marginal value o f capacity AV(x,  t). 

Therefore:

Corollary 4.2 For the capacity control problem (4.2) or equivalently, (4.12) and (4.4), the 

optimal allocation policy is nested in that u *  (x, t) = 1 i f  i  < i*  (x, t), and u *  (x, t) = 0 

otherwise, and i * ( x , t )  is decreasing in the marginal value o f capacity AV (x, t ) .
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4.3.4 An efficient frontier for multi-product pricing and capacity controls

The subproblem of computing the optimal revenue subject to a constraint on the aggre­

gate capacity consumption rate specified in (4.6) and (4.11) defines an efficient frontier 

(p,Rr (p)) and (p, Ra(p)) for the dynamic pricing and capacity allocation problems, 

respectively. As in  the context of portfolio optimization, the efficient frontier provides 

a systematic framework for comparing different policies and highlights the structure 

of the optimal controls for these two problems. It may also lead to computational im ­

provements i f  this subproblem can be solved efficiently, preferably in closed form. This 

can be achieved for some commonly used demand models such as the linear and the 

multinomial logit; both are reviewed in  section 4.5.

As mentioned in  the introduction the idea of an efficient frontier has also appeared 

in  Fe n g  and X i a o  (2000, 2004) and T a l l u r i  and v a n  Ry z i n  (2004). The structure 

of the dynamic programs studied in  this section has been observed in  other revenue 

management papers, such as Li n  e t . a l . (2003) and their study of single-resource 

capacity control problems where each arrival may request multiple units of capacity, 

and V u l c a n o  e t . a l . (2002) and their analysis of optimal dynamic auctions. The 

second o f these papers studies a discrete time model where demand arrives in  batches, 

and in  each period the firm  runs an auction among the potential buyers of that period. 

Given an announced auction mechanism, the firm  observes the bids and selects how 

many units to award by balancing total consumption w ith the extracted revenues in that 

period. This is the discrete-time, batch demand analog to choosing p and computing 

Rr ip), and in that sense the dynamic programming structure in  V u l c a n o  e t . a l . (2002)
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is closely related to the one observed here.

4.4 Deterministic analysis of the multi-product pricing problem

This section studies deterministic (fluid model) formulations of multi-product revenue 

management problems to provide some structural results (Section 4.4.1) and suggest 

simple and implementable heuristics for the underlying problems (Section 4.4.2). The 

latter have desirable theoretical performance guarantees and are shown to perform well 

in  the numerical experiments of the next section. Finally, section 4.4.3 sketches how to 

extend these ideas to the network setting.

4.4.1 Solution to the deterministic multi-product pricing problem

The dynamic program of section 4.3.1 is generally not solvable in  closed form, and one 

has to refer to numerical techniques for the computation of the optimal pricing deci­

sions, which is often difficult and results in  policies that are hard to implement. This 

motivates the use of approximate models that are analytically tractable and may lead 

to practical solutions. The most natural candidate is the ‘flu id ’ model that has deter­

ministic and continuous dynamics, and is obtained by replacing the discrete stochastic 

demand process by its rate, which now evolves as continuous process. It is rigorously 

justified as a lim it under a strong-law-large-numbers type of scaling when we let the 

potential demand and the capacity grow proportionally large; see G a l l e g o  and v a n  

R y z i n  (1994, 1997), and Section 4.4.2.

It is simplest to describe the flu id model in continuous time (this is consistent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

89

with Galleg o  and v a n  Ry z in  (1994, 1997)). In more detail, the realized instanta­

neous demand for product i  at time t in the flu id model is deterministic and given 

by Aj(£). and allow product i  requests to consume capacity at a rate o f a L > 0 units 

per unit of demand, and denote by a the vector [a i , . . .  , a n]. This is a generaliza­

tion of the model considered thus far that assumed uniform capacity requirements 

that w ith  no loss of generality can be taken to be 1, which however can be addressed 

w ith no increase in  complexity. With a general capacity requirement vector a  the 

capacity consumption rate is defined by p = a ' A, and the definitions of Rr  and Ar 

can be appropriately adjusted to reflect that change. The system dynamics are given 

by d x ( t ) / d t  = -  i ci iAi i t),  x(0) = C, together w ith the boundary condition that 

x(T)  > 0 . i.e., this model has deterministic and continuous dynamics. The firm  selects 

a demand rate A*(£) (or a price) at each time t. The fluid control formulation of our 

revenue management problem is the following:

Single-product problem: For the case with one product Ga l l e g o  and v a n  Ry z i n  

(1994) showed that a fixed price (and thus a constant demand rate) is optimal for (4.13). 

This is described as follows. Let A = argmax{R(A) : A e £) and p = p (A) be the 

demand rate and price that maximize the instantaneous revenue rate in the absence 

of any capacity considerations, respectively. Also, define A0 = C /T  be the run-out rate 

that depletes capacity at time T, and let p° = p(A°) be the associated price. Then,

| j QTR(A(t))dt : a'A( t )dt  < C and A(t) e £  V tmax
{AU),te[0,T]}

(4.13)
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Ga l l e g o  and v a n  Ry z i n  (1994) showed that

A = min(A, A0) and p = max(p, p°)

are the optimal demand rate and price for the fluid formulation of the pricing problem 

given in  (4.13). (To differentiate from the solution of the dynamic programming fo r­

mulation of the previous section we have used an overbar to denote the flu id solution.) 

That is, the optimal demand and price are constant and do not depend on the state 

of the system at any given time t. Intuitively, the solution uses the revenue maximiz­

ing price p unless this w ill deplete the capacity too soon, in  which case the firm  can 

increase its unit price to p° and sell its capacity by time T, while accruing higher to­

tal revenues. Ga l l e g o  and v a n  Ry z i n  (1997, §4.5) extended these results to multiple 

products, but in  that case without providing such a succinct solution.

Multi-product problem: Following the approach of section 4.3 we can reduce the 

multi-product problem to an appropriate single-product one, and thus solve it  in  closed 

form. Specifically, recalling the definitions of the aggregate revenue function Rr (p) and 

optimal demand rate vector Ar (p) in  (4.6) adjusted for the fact that p = a ' A, (4.13) can 

be rewritten as:

max { f  Rr (p( t ) )dt  : [  p( t )d t  < C, p i t )  e R, V t j . (4.14)
{p(t),te[0 ,T]} (Jo Jo J

Note that (4.14) is the same as (4.13) for a single product w ith the revenue function 

Rr , and hence, it  is solvable using the approach described above. Let p° := C/T  and
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p = argmaxp Rr (p). Then, the optimal solution to (4.14) is to consume capacity at a 

constant rate p given by

p := min(p, p°). (4.15)

The corresponding vector of demand rates that maximizes the instantaneous revenues 

subject to the constraint that capacity is consumed at a rate p is given by Ar (p), and 

the corresponding prices are p(Ar (p)). A direct verification that this solution satisfies 

the optimality conditions for (4.13) establishes the following result.

Proposition 4.4 Let A (•) and p(-) denote the optimal vectors o f demand rates and prices 

fo r (4.13). Then, A, p are constant over time and are given by

A(t) = Ar (p) and p( t )  = p(Ar (p)). (4.16)

4.4.2 Heuristic policies extracted from the deterministic analysis

Based on the preceding analysis we propose three heuristics for the underlying revenue 

management problems, which we analyze in the asymptotic setting introduced in  Ga l ­

lego  and v a n  Ry z in  (1997) and Cooper  (2002). Among other things we w ill show that 

the dynamic heuristic that ‘resolves’ the flu id policy as t progresses is asymptotically 

optimal in  an appropriate sense.

I. Pricing heuristics

a. A static pricing heuristic: The first and simplest of our heuristics implements 

a static pricing policy p specified in Proposition 4.4. This policy corresponds to the
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make-to-order heuristic of Ga l l e g o  and v a n  Ry z i n  (1997).

The static nature of policy (a) is desirable for implementation purposes (see G a l ­

l e g o  and v a n  Ry z i n  (1997)), but also removes any form of capacity control. This 

issue does not arise in  the flu id formulation, because capacity is then drained along 

an optimal deterministic trajectory, but it  may be relevant in the underlying stochas­

tic problem when capacity is close to being depleted. The next heuristics provide two 

possible adjustments to this static policy that add such capacity control capability and 

seem of practical interest. We start by recognizing that the solution of the flu id  pricing 

problem of Section 4.4.1 can also be described in feedback form as

p( x , t )  = , (4.17)

where x  is the remaining capacity at time t. The deterministic trajectory of the flu id 

model is, of course, such that x / ( T  -  t) = C/T  for all t i f  p > C/T,  and x / ( T  -  t) = 

(C -  p t ) / (T -  t) > C/T  i f  p < C/T.  In both cases, p(x,  t) = m in(p, C/T)  for all x,  t 

along the flu id trajectory of the capacity process, and thus (4.17) is identical to the 

static control derived in (4.15).

b. A List Price Capacity Control (LPCC) heuristic: One way to implement (4.17) is by 

coupling capacity control decisions together w ith the static pricing policy given in  (a). 

Specifically, our second heuristic is defined as follows:

1. price according to p and label products such that p i / a i  > p 2 / < * 2  > ■ • • > pn/a.n, 

and

2. compute p(x,  t ) and use the capacity controls Ui (x,  t) = 1 i f  x  > 0, u i ( 0 , t )  = 0,
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and

Ui (X, t )  = -
1 i f  p(x , t )  -  S /< t« /A /> aiXi

for k > 2. (4.18)
0 otherwise

Note that w ith prices fixed, this control can only reduce the aggregate capacity con­

sumption rate over its nominal value of Z?=i a i^u  but can never increase it. This 

heuristic makes a product available only i f  the flu id solution starting from that state 

would choose to sell this product in all future time periods, and ‘closes’ the product 

i f  the flu id solution would dictate only partial acceptance of the associated demand. 

When implementing in  a discrete-time setting, rounding errors can be avoided by set­

ting u k(x, t )  = 1 i f  p (x , t )  -  Zi<fc«iAi > (T -  t + l ) ( a kh ) -

This policy is a refinement of the static pricing policy in (a) and the make-to-order 

heuristic of Ga l l e g o  and v a n  Ry z i n  (1997). Other examples of jo in t pricing and ca­

pacity controls can be found in  the recent papers by V u l c a n o  e t . a l . (2002), by Li n  

e t . a l . (2003) and Fe n g  and X i a o  (2004).

c. A dynamic pricing heuristic: The th ird  policy translates the aggregate control 

p(x,  t) into product-level rates (and prices) through

A(x, t) = Ar (p(x, t)) and p( x , t )  = p(A(x, t ) ) ,  (4.19)

where the mapping Ar (-) was the maximizer in  (4.6). This corresponds to the idea 

of ‘resolving’ the flu id problem as we step through time, which is widely applied in 

practice, where, however, the resolving occurs at discrete points in  time, e.g., daily or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

94

weekly depending on the application setting. Despite its practical appeal and use, to 

the best of our knowledge policies that use this resolving idea have not been analyzed 

theoretically, other than the isolated example provided by Cooper  (2002) that illus­

trated that resolving may in  fact degrade the performance of the flu id heuristic in a 

stochastic problem of multi-product capacity control problem. Our preceding discus­

sion illustrates that ‘resolving’ is nothing but implementing the flu id policy in  feedback 

form. The analysis that follows w ill characterize its behavior in  an appropriate asymp­

totic sense, and the numerical results of the next section w ill demonstrate that it  tends 

to outperform the other two candidate policies.

II. Asymptotic performance analysis of the pricing heuristics

The remainder of this subsection offers a brief asymptotic characterization of the 

performance under these three heuristics that shows that all three are (fluid-scale) 

asymptotically optimal in  a regime where the potential demand and capacity grow pro­

portionally large; this is consistent w ith the setup and the criterion of Galleg o  and 

v a n  Ry z in  (1997) and Cooper  (2002). Specifically, using k as an index, we w ill con­

sider a sequence of problems w ith demand model Afc(-) = fcA(-) and capacity Ck = kC, 

and we w ill let k increase to infinity; a superscript k w ill denote quantities that scale

w ith k. Let N, for i = 1 n  denote independent unit rate Poisson processes, and

recall the functional strong-law-of-large numbers for the Poisson process that asserts 

that as k — oo and for all f > 0,

N i \kt )  -  t a.s. (4.20)
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For all of the candidate policies the capacity dynamics can be expressed as follows.

Let

where Ai ( t )  is the demand rate for product i at time t. Then, the cumulative demand 

for that product up to time t is equal to Ni (Ak(t)) and the remaining capacity at time 

t is

Our goal here is to analyze the ‘fluid-scale’ behavior of the capacity process defined as 

X k(t) := X k( t ) / k  under the three candidate policies. The analysis of the static policy 

(a) is related to that of Gallego  and v a n  Ry z in  (1997), while those of the dynamic 

policies are new.

Analysis o f the static heuristic (a): In this case, the firm  uses the constant price 

vector p, which results in  the demand rates Ak{p) = k\ .  We could either assume that 

the demand rates become 0 when the capacity is depleted, or keep them unchanged but 

modify (4.22) to X%(t) = (Ck -  X f= i atNi (Ak( t ) ) )+. (The subscript is used to identify 

the policy.) For simplicity we w ill proceed w ith the latter. For this policy we have that 

A k(t) = Aikt,  and thus as k — oo

(4.21)

n

(4.22)
i= l

Ni (Ak(t))
 P « A i t  a.s., uniform ly in t e [0, T], (4.23)
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It immediately follows that as k — oo and for all t  e [0, T]

X k(t) -  | c  -  = C - p t  a.s.;

the (-)+ was removed since from (4.15) pt  < C for all t e  [0 ,T]. Let Rk denote the 

revenues extracted under policy (a), and T k := in f { 5  > 0 : X lL i aiNi (Aiks)  > Ck} be the 

random time where the aggregate capacity requested reaches or exceeds the available 

capacity Ck. Then,

n
Ra '■= X  PiNi ( k \ i i a i n (T,Tk)) -  <5, (4.24)

i= l

where 5 is a random variable that corrects revenues for the case where r k < T, which is 

bounded above by max; p;. (We w ill not delve into an accurate description o f 5, since it 

w ill turn out to be asymptotically negligible.) From (4.23) and arguing by contradiction 

shows that (T -  T k ) +  — 0 a.s., as k — 00. Combining with (4.24) we get the following 

result.

Proposition 4.5 Suppose that demand and capacity are scaled according to Ak(-) = 

feA(-) and Ck = kC, and consider the static pricing policy p k(x, t) = p for all x,  t and 

all k. Then, ask  — 00, X k{t) — C -  p t  a.s., uniformly in t, and %R% — £ f=1 p jA jT a.s.

That is, the static pricing policy (a) is asymptotically optimal in  that it  achieves as 

k -» 00 the revenue extracted in  the flu id model; this is the criterion used in  G a lle g o  

and v a n  R yzin  (1997) and Cooper (2002). This is also referred to as fluid-scale asymp­

totic optimality (see M a g la ra s  (2000)) to highlight that it  pertains to optimality w ith
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respect to the highest order revenue term. We w ill next analyze the dynamic pricing 

policy (c), and then return to deal w ith (b).

Analysis o f the dynamic heuristic (c): The dynamic nature of this policy requires a 

more detailed study. The cumulative demand for product i  up to time t is equal to 

Ni (Al-(t)),  where

r t
Ak(t) = Jo k\ i (s)ds  where Ads) = (m in(p,Xc {s) / {k{T  -  s ) ) ) ) , (4.25)

for A[(-) defined in  (4.6), and Xk{t) denotes the remaining capacity at time t under 

policy (c), defined in  (4.22). Now, Xjf(t) is bounded (Xk(t) e [0, C]) and therefore 

the sequence {Xk(t) : t e  [0, T ]} is tight (see G l y n n  (1990, §3)), and therefore has a

- k ■
converging subsequence, say [ k j ] ,  such that along this subsequence, Xc ' ( t ) -  x c(t) 

a.s., uniform ly in t; at this point lim it trajectory may depend on the converging subse­

quence, but as we w ill see momentarily all possible lim it solutions coincide. Given the 

continuity of AT( -) and using Lemma 2.4 of D a i  and W i l l ia m s  (1994b) we get that as 

k — oo

i A- lt) = t  A< (min( *  t t } ) ) ds -  JoAr h n(Ar ^ ) ) ds ,4-26)

a.s., uniform ly in  t. Using (4.20), (4.22) and (4.26) we get that as k -» oo

X k(t) = C - ^ f j a iN d A k(t)) -  C - ^ m m ( ^ p , ^ j ) d s  (4.27)

= C - p t ,
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where the last equality follows from identifying that this is the unique solution to (4.27), 

and the convergence is almost sure, uniform ly in t. Finally, the revenues extracted 

under policy (c) are

n  f t
Pi ( t )dNi (Ak(t)),

;= i Jo

where p k(t) is the price vector that corresponds to Ar (m in (p ,x£ (t) / (T  -  t ) )), the 

demand rate vector at time t, and the integrals should be interpreted in the Riemann- 

Stieltjes sense. From (4.26) and (4.27) we have that A [(m in (p,x£( t )  / (T -  t ) ) )  — A* a.s., 

uniform ly in t. By the continuity of the inverse demand function we have that p k{t) — p 

a.s., uniform ly in  t, and therefore using again Lemma 2.4 of D a i  and W i l l ia m s  (1994b) 

we get the result summarized below.

P roposition4.6 Suppose that demand and capacity are scaled according to Ak(-) = 

kA(-) and Ck = kC, and consider the dynamic pricing heuristic defined through (4.25). 

Then, X k(t) — C -  p i t )  a.s., uniformly in [0, T ], £Rk -» £ ”=1 P i KT  a.s.

Analysis o f the LPCC heuristic (b): This policy is defined through Ak(t) = k \ L ■ 

Jo u k(t )dt ,  where u k( t ) was defined in (4.18) and can be expressed as follows:

u k(t) = l { x £ ( t ) > 0 }  and

f X k(t) 1
u k(t) = 1 j m i n ( p ^ - j )  -  Xj<iCi j \ j  > a fk i K o r i  > 2, (4.28)

where 1 {•} is the indicator function. Similarly to the analysis of policy (c), the family 

{x j f ( t ) , t  g [0 ,T]}  is tight, and thus it  has a converging subsequence {k , } on which
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- k ■
XbJ( t )  — X b ( t )  a.s., uniform ly in t. Writing down X b ( t )  and evaluating U i ( t ) ,  reveals 

that in  the lim it model Mj(t) = 1 for all products i. Arguments similar arguments to 

the ones used above gives the following result.

Proposition 4.7 Suppose that demand and capacity are scaled according to Ak(-) = 

kA(-) and Ck = kC, and consider the LPCC heuristic defined through (4.28). Then, 

X%(t) -  C -  p( t )  a.s., uniformly in [0, T], ^Rb -  £?=i p i^ T  a.s.

That is, resolving and using either the dynamic pricing or the LPCC heuristics is 

asymptotically optimal in  the flu id sense, as was the static policy (a). We note that 

the last proposition is related in  spirit to the one proved in  Lin  e t .a l . (2003) fo r their 

proposed policy. Propositions 4.6 and 4.7 established that the suboptimal behavior 

of the resolving idea demonstrated by the example of Cooper  (2002) does not persist 

when one considers its performance in systems w ith large capacity and large demand. 

The same asymptotic performance would be obtained in  a setting where the resolving 

occurs in discrete points in time, provided that this is done sufficiently frequently. If 

l k is the time between resolving epochs, then the type of analysis used in  studying the 

asymptotic behavior of discrete-review policies (see Ha r r is o n  (1995b) and Mag lar as  

(2000)) can be applied to establish that it  suffices that l k i 0. That is, the number of 

demand requests between resolving periods must be small compared to the capacity. A 

more refined analysis that involves a central-limit-theorem type of correction to Rk, Rb 

and Rk that is proportional to \[k  would in  fact show that policy (c) is better than (b), 

which is better than (a). These findings are illustrated numerically in the next section. 

Finally, we note that the feedback nature of the dynamic policies w ill make them more
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robust against model and/or parameter uncertainties, e.g., w ith respect to the func­

tional form of the demand model or the size of the cross-price sensitivity parameters. 

While this issue is of significant practical and theoretical interest, its analysis is beyond 

the scope of this paper.

4.4.3 Dynamic Pricing Network Revenue Management Problems

Suppose that the firm  is operating a network of resources, indexed by j  = 1,... , m, 

and that each product i  request consumes A,/ units of resource j  capacity. Let A := 

[Ai j ]  denote the associated capacity consumption matrix, and assume that the in itia l

capacity for each resource j  is Cj .  Then, the flu id model formulation of the network

dynamic pricing problem is:

max \ \ T R(A(t ) )dt  : C  A \ ( t ) d t  < C  and A(t) e £  V t j  . (4.29)
{A(t), te [0 ,T ]}  ( J o  Jo J

As before, this problem can be expressed in  terms of p which is defined by p := AA. 

Specifically, let

Rr (p) := max {R(A) : AA = p, A e £ } ,  (4.30)
A

be the maximum achievable revenue rate when resource capacity is consumed at a rate 

p, and Ar (p) denote the corresponding vector of optimal demand rates. Then, (4.29)
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can be reduced to

max
{pit), te[0,T]} J

Rr (p( t ) )dt p( t )d t  < C and p( t )  e R V t (4.31)

Let p denote the solution to (4.31). Then, Ar (p) w ill be the vector o f optimal demand 

rates for (4.29). This reduction can be computationally beneficial, since as is often 

the case the number of products (e.g., the number of fare-class and origin-destination 

pairs) tends to be greater than the number of resources (e.g., number o f flights in  a 

hub-and-spoke network). One can similarly address network capacity control problems 

using the results of the previous subsection. Overall, this structural decomposition 

seems a promising direction for future work towards the development of practical net­

work revenue management algorithms. We refer the reader to Ga l l e g o  and v a n  Ry z i n  

(1997) and Kl e y w e g t  (2001) for fluid formulations to multi-product network revenue 

management problems.

4.5 Numerical examples

This section reports on a set of numerical examples that contrast the performance of 

the heuristics proposed in  the previous section to that of the optimal policy obtained 

from  the dynamic program. We review a variety of settings that explore the effects of 

the jo in t capacity constraint and of cross-price sensitivities in  multi-product revenue 

management.

The base model that we use has two products, each consuming one un it o f capac­

ity  per request, and a linear demand relationship of the form A(p) = A -  Bp w ith
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A = [.3, .1] and T = 200 time periods. Towards the end of the section we w ill study 

examples w ith three products and non-uniform capacity requirements. The price set is 

defined as T  = {p : A - B p  > 0}. Recall that the inverse demand and revenue functions 

are given by p ( A) = B~] (A -  A) and R(A) = A'B_1(A -  A), respectively. The specific 

policies that we consider are the following:

• ‘Revmax’ corresponds to the monopoly price vector p that maximizes the aggre­

gate instantaneous revenue rate disregarding the capacity constraints, computed 

as follows:

A = argmax {A'B-1 (A -  A) : A > 0} = (1/2)(B_1 + B_1,)_1A and

p = B_1 (A -  A).

• ‘Fluid’ implemented the price vector p = p ( \ r (p)) as defined in  (4.15) and (4.16).

For the linear demand model one can derive closed form expressions for the aggre­

gate revenue function Rr (p), the corresponding revenue maximizing demand vector 

Ar (p), and get a simple characterization of policies (a) and (b). We w ill illustrate this 

point for the special case where B is diagonal, i.e., bi j  = 0 for all i  *  j ,  in  which case 

there are no cross-price sensitivity effects due to product substitution and/or comple­

mentarities. In this case, B = diag(i>n,... ,h j/) and B_1 = d ia g ( l / fcn , ... , 1/bn).  The 

revenue function is R(A) = Xf=i -MA* -  Ai ) /bu  and 3R(A)/3Aj = (Aj -  2A;)/£>;;. With

no loss of generality we w ill assume that products are labelled such that A i / b n  ̂
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A 2 /£ > 2 2  ^  ^  A 11 bn- The ‘Revmax’ policy is given by

A; = Aj /2 and p i = h i l 2 b i i .

The ‘Fluid’ policy is defined as follows. For a sequence of constants 0 = p (0) < p (1) < 

. . .  < pd) (specified below) we set i (p) as a function of p to be i (p) = m in {i > 

0 : p (l) > p},  and then

A J(p) =
h - b B j j  j < i ( p ) Z k< i h - P

where p = *  ,
o j  > Up ) Z k ‘ sBkk

and Rr (p) = Ar (p) 'B~l (A -  Ar (p)) which is a piecewise concave quadratic function 

in  p. The expression for p comes from the form of the Lagrange m ultip lier that takes 

into account the ‘open’ products. It remains to define the constants p (l), which is done 

recursively as follows:

(1) • f rv / A l 21l A 2 1

" ‘  “ P ° : - ^ T ’ bTzi-
f  ^  i i A i  — 2 £i A2 — 2I2 A3 1

and so on. A similar argument can be applied when the cross-price sensitivity parame­

ters are non-zero and the capacity requirements are not all equal to 1.

• ‘Decoupled-DP’ is the following heuristic: each product manager calculated up­

front a dynamic pricing strategy for his product by solving a single-item DP, dis­

regarding cross-elasticity effects w ith the other product. A t each point t in  time,
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the remaining capacity is split according to the nominal split prescribed by the 

flu id solution, Q( t )  := Ar (p) ■ (T - 1). The product managers then implement the 

pricing strategy according to the remaining time and their assigned inventory. 

This heuristic is one of many possible ‘refinements’ over the deterministic flu id 

solution, and is used for illustrative purposes.

• ‘LPCC’ is the jo in t (list) pricing and capacity control heuristic defined through

(4.18).

• ‘DynPrice’ is the dynamic implementation of the flu id policy defined through

(4.19).

• ‘DP’ implemented the solution of the dynamic program outlined in Section 3.1.

The expected revenue under the first two static pricing rules were computed analyti­

cally using a binomial model, while those under the next three policies were obtained 

by averaging out revenues from 1 , 0 0 0  simulated sample paths.

I. The effect o f the jo in t capacity constraint. Table 1 studies a series of problems w ith 

increasing capacity. The price sensitivity matrix is B = d iag(l,6 ), which implies that 

there are no cross-price sensitivity effects (b n  = i?2 i = 0 ) to isolate the effect of the 

jo in t capacity constraint on the performance of the various heuristics . 1 The resulting 

demand model was

A i(p) = .3 -  l p i  and A2 (p) = .1 -  6 p 2 -
‘ The parameter values in  th is and other examples that fo llow  were selected from  a large pool o f 

cases tested, and are representative in  terms o f the op tim a lity  gaps observed fo r the various policies. 
To demonstrate the effects o f the jo in t capacity constraint and cross-price sensitivities, the relative 
magnitudes o f A  and B fo r the two products are such that in  m ost cases it  is economically op tim a l to 
offer bo th  products.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

105

Table 4.1: Results for B = d iag(l, 6). For each policy we report the expected revenue 

(xlOOO) and the optimality gap relative to the performance of the optimal policy (DP).

c Revmax Decoupled-DP Fluid LPCC DynPrice DP

15 171.87 (45.9%) 186.00 (41.4%) 304.25 (4.2%) 305.25 (3.9%) 305.40 (3.8%) 317.52

20 229.17(39.3%) 236.64 (37.3%) 366.29 (3.0%) 367.34 (2.7%) 372.18 (1.5%) 377.67

25 286.41 (31.4%) 285.38 (31.7%) 404.96 (3.0%) 406.98 (2.6%) 416.05 (0.4%) 417.63

30 342.94 (22.2%) 324.83 (26.3%) 420.98 (4.4%) 426.04 (3.3%) 436.05 (1.0%) 440.53

35 394.66 (12.6%) 348.15 (22.9%) 428.65 (5.1%) 443.25 (1.9%) 445.76 (1.3%) 451.63

40 432.53 (5.4%) 367.89 (19.5%) 432.53 (5.4%) 454.76 (0.7%) 454.55 (0.7%) 457.00

45 451.40(1.8%) 396.58 (13.7%) 451.40(1.8%) 458.73 (0.2%) 458.63 (0.2%) 459.50

50 457.18 (0.7%) 414.24 (10.0%) 457.18 (0.7%) 459.16 (0.3%) 458.93 (0.3%) 460.39

The ‘Fluid’ pricing problem becomes unconstrained, i.e., the capacity constraint is 

not binding at its optimum, for C > 40 units, in  which cases the ‘Revmax’ and ‘Fluid’ 

prices coincide. We observe the following. First, the relative performance under the 

‘Fluid’ and ‘Revmax’ heuristics improves as the capacity C increases; this is consistent 

w ith the results by Ga l l e g o  and v a n  Ry z i n  (1994, 1997) that also illustrated that the 

effect of the capacity constraint is more pronounced when C is scarce. Second, for the 

cases where the capacity is scarce, the ‘Fluid’ heuristic that incorporates the capacity 

constraint significantly outperforms ‘Revmax,’ but its regret over the ‘DP’ policy can 

still be substantial (0.7%-5.4%). Third, in comparing ‘Fluid’ w ith ‘LPCC’ we note that 

when the capacity is small C < 20 the flu id prices effectively switch off product 2 and 

operates as a single-product system, where the two rules are almost identical. As the 

capacity increases, it  is optimal to offer both products and the effect o f the capacity 

control capability of LPCC becomes more evident. Switching from  an effectively single­
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product to a two-product solution also causes the optimality gaps to be non-monotone. 

Fourth, the dynamic pricing heuristic that effectively resolves the flu id policy at each 

time point is significantly better than all these heuristics when the caapcity is scarce. 

Finally, the ‘Decoupled-DP’ policy performs very poorly even when the firm  has ample 

capacity, mainly because it disregards the pooling effects across products.

II. The cross-price elasticity effects. The next two tables study how cross-price sensi­

tiv ity  effects impact the performance of these heuristics by gradually increasing the in­

teraction terms b 12 and £>2 1 - Table 2 used £>12 = - .4  and £>21 = - . 6 , which corresponds 

to the demand model A i(p) = . 3 - l p i  + .4 p 2 and A2 (p) = . l - 6 p 2 + -6 p i,  while Table 

3 had b \ 2  = -0 .8  and £>21 = -1.2. Again, the ‘Decoupled-DP’ heuristic performs very 

poorly when compared to all other candidates, and its performance deteriorates sub­

stantially as the magnitude of the cross-price interaction terms increases. The ‘Fluid’ 

and ‘LPCC’ policies that incorporate the interaction effects in  their static prices perform 

consistently well, but again the magnitude of their respective optimality gaps tends to 

increase as the interaction coefficients increase. Based on a wide range of examples ran 

w ith  random interaction terms b ij while keeping bu constant, we found that the ‘LPCC’ 

heuristic outperforms the ‘Fluid’ policy by about .75% to 2% in  cases where the capacity 

is sufficiently large so as to want to offer both products. The dynamic heuristic adds 

an other 1 % of improvement.
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Table 4.2: Expected revenues and optimality gaps when B = [1 -  .4; - .6  6 ].

c Revmax Decoupled-DP Fluid LPCC DynPrice DP

20 235.77 (42.0%) 121.35 (70.2%) 394.27 (3.1%) 396.13 (3.6%) 399.21 (1.9%) 406.81

30 353.42 (26.1%) 199.95 (58.2%) 457.89 (4.2%) 464.66 (2.8%) 472.74 (1.1%) 478.11

40 457.84 (8.4%) 262.36 (47.5%) 475.35 (4.9%) 492.57(1.5%) 496.94 (0.6%) 500.07

50 500.63 (1.1%) 342.00 (32.4%) 500.63 (1.1%) 505.57(0.1%) 506.05 (0.0%) 506.17

Table 4.3: Expected revenues and optimality gaps when B =  [1  -  . 8 ; - 1 . 2  6 ] ,

c Revmax Decoupled-DP Fluid LPCC DynPrice DP

20 265.22 (44.8%) 75.03 (84.4%) 465.13 (3.2%) 465.19(3.1%) 472.12 (1.7%) 480.29

30 397.77 (30.1%) 133.86 (76.5%) 545.46 (4.1%) 551.33 (3.1%) 562.73 (1.0%) 568.68

40 524.30 (12.6%) 204.75 (65.9%) 572.29 (4.6%) 589.80 (1.7%) 597.80 (0.4%) 599.90

50 597.98 (2.1%) 260.79 (57.3%) 597.98 (2.1%) 606.49 (0.7%) 606.70 (0.7%) 610.99

III. Mulitple products. Table 4 reports results for a model w ith three products, and 

provides a brief illustration o f the consistently good performance of the LPCC and 

DynPrice policies.

Table 4.4: A three-product example: A = [.2 .1 .1] and

B =  [1 -  .8 - .4 ; -1 .2  3 - .6;-.3 -  .6 4]

C Revmax Decoupled-DP Fluid LPCC DynPrice DP

10 132.08 (56.0%) 12.81 (95.7%) 237.65 (20.8%) 251.98 (16.1%) 284.04 (5.4%) 300.16

20 264.15 (42.3%) 38.13 (91.7%) 436.29 (4.7%) 444.12 (3.0%) 451.15 (1.4%) 457.63

30 395.99 (25.4%) 92.95 (82.5%) 507.77 (4.3%) 511.24 (3.6%) 525.38 (1.0%) 530.51

40 513.68 (8.4%) 157.74 (71.9%) 534.99 (4.6%) 543.67 (3.0%) 556.64 (0.7%) 560.65

50 563.05 (1.1%) 199.91 (64.9%) 561.52 (1.4%) 563.82 (1.0%) 566.42 (0.5%) 569.35

IV. Non-uniform capacity requirements The next two tables summarize results for a 

model w ith two products that have different capacity requirements. This change com­
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plicates the associated dynamic programming formulation, in  the sense that the struc­

tural result of Section 4.3.1 that allows us to consider the problem in  terms of the 

aggregate capacity consumption rate no longer holds. Numerically, this affects the 

backwards induction step required to solve the problem. In contrast, the flu id analysis 

of Section 4.4.1 and the heuristics extracted therein are still valid. In the notation of 

Section 4.4, we w ill assume that product i  consumes a; units of capacity and a i 4= a 2 . 

The results of the next two tables suggest that the flu id model heuristics perform quite 

well in  cases where the capacity requirements are small compared to the capacity i t ­

self. This effect is more pronounced in Table 6 because in  this example the product 

that requires more capacity per request (product 1) happens to be the more profitable 

product as well, hence making the overall capacity small compared to a\ in the first 

two or three rows.

Table 4.5: Expected revenues and optimality gaps when

B = [1  -  .4 ;- .6  6] and a = [1  2 ],

c Revmax Fluid LPCC DynPrice DP

10 92.61 (63.0%) 234.09 (6.6%) 235.65 (5.9%) 233.64 (6.7%) 250.54

20 181.29(55.3%) 394.35 (2.8%) 394.92 (2.7%) 399.77 (1.5%) 405.75

30 273.21 (42.7%) 456.32 (4.3%) 459.51 (3.7%) 464.22 (2.7%) 476.91

40 361.53 (27.1%) 468.52 (5.6%) 485.66 (2.1%) 488.78 (1.5%) 496.05

50 442.54 (12.0%) 473.95 (5.7%) 494.47 (1.7%) 497.77(1.0%) 502.77

60 491.22 (2.9%) 489.40 (3.2%) 500.14(1.1%) 504.46 (0.3%) 505.81

70 502.87 (0.8%) 503.02 (0.7%) 504.94 (0.4%) 505.07 (0.3%) 506.73

80 505.12 (0.3%) 505.74 (0.2%) 506.10 (0.2%) 506.33 (0.1%) 506.86
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Table 4.6: Expected revenues and optimality gaps when

_________ B = [ 1 - . 4 ; - . 6  61 and a = [2 1]._________

c Revmax Fluid LPCC DynPrice DP

10 66.90 (51.8%) 120.96 (12.9%) 121.81 (12.3%) 120.51 (13.3%) 138.92

20 136.64 (45.8%) 235.07 (6.7%) 235.57 (6.5%) 234.83 (6.8%) 252.04

30 206.30 (39.5%) 325.97(4.4%) 327.28 (4.0%) 327.54 (3.9%) 340.95

40 276.01 (32.2%) 393.26(3.3%) 394.49 (3.0%) 399.77 (1.7%) 406.89

50 345.91 (23.4%) 438.37(3.0%) 438.61 (2.9%) 449.08 (0.6%) 451.85

60 411.77 (14.2%) 461.79 (3.7%) 463.35 (3.4%) 473.84 (1.2%) 479.64

70 465.83 (6.0%) 473.78 (4.4%) 477.88 (3.6%) 491.75 (0.8%) 495.78

80 494.94 (1.7%) 493.53 (2.0%) 495.15 (1.7%) 500.27(0.7%) 503.60

90 503.42 (0.6%) 502.08 (0.8%) 505.33 (0.2%) 505.85 (0.1%) 506.26

V. An analytical example: the Multinomial Logit (MNL) model We complete this sec­

tion by illustrating that for the commonly used MNL choice model the subproblems 

of computing the revenue function and demand rates as functions of the aggregate 

demand rate are solvable in closed form. In the MNL model we assume that potential 

customers arrive to the firm  w ith utilities for each product i given by Ui + gt, where 

Ui is the deterministic portion that is common to all customers and g, is the random 

term (that differentiates customers). The MNL choice model hinges on the assumption 

that these random terms gr are random variables drawn from a Gumbel distribution 

w ith mean zero and parameter one (the latter is assumed w.l.o.g.), which as IID across 

products and customers. The deterministic component of the u tility  can be written as 

Ui = vt -  Pi, where Vi denotes the ‘average value’ of the product and p t is its price. 

Finally, we denote by uo + §o the u tility  of the no-purchase option, where go is IID with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

110

the £ i’s and w.l.o.g. we w ill assume that uo = 0. Finally, let A be the aggregate customer 

arrival rate or market size. Under these assumptions the demand rates for product i is 

given by

pVi -Pi
Ai(p)  = A

‘ 1 + 1 / ^ -P j '

Suppose further that the cost of a unit of product i  to the firm  is given by Cj > 0. Then, 

the profit rate function as a function of the price vector is given by At( p ) (p l -  

Cj).  With some abuse of notation define the aggregate profit rate function Rr (p) to 

incorporate the product costs ct as follows

n n
Rr (p) := max j  £  Ai (p) (pi  -  c{) : £  Ai(P) = P> A(P) ^  0

U = 1 i= 1 J

Then, simple algebraic manipulations give that

Rr  (p) = p ln(]£eW  CU -  p ln (p /(A  -  p)) (4.32)
j

and

Ai(p) = P ^ . g V j - C j  and pt(p) = Ci+ ln (S je Vj) - ln ( p / ( A  -  p )). (4.33)

This calculation offers a nice insight about the structure of the optimal pricing strategy, 

namely that each product is priced at its cost plus a common premium that depends 

on the aggregate capacity consumption rate. From a computational viewpoint, one can
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now use the expression for Rr (p) in  the dynamic program of the form discussed in 

Subsection 4.3.1 to efficiently solve for the optimal capacity consumption rate p*  (x, t ) 

and then use (4.33) to translate this into product-level controls.
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Chapter 5

Price Competition under Time-Varying 

Demands and Dynamic Lot Sizing 

Costs

5.1 Introduction

Determining the ‘right’ price to charge for a product is a complex task. A voluminous 

literature in  economics and marketing has been devoted to models which prescribe how 

prices should be set in  industries in  which a lim ited number of competing firms offer 

similar products, which may therefore be viewed as substitutes. These papers typically 

model the interaction among competitors as a noncooperative game, see V iv e s  (2000) 

and T ir o le  (1988) for survey texts.

More recently, operations management papers have demonstrated that the opera-

112
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tional environment and associated cost structures may have a fundamental impact on 

the equilibrium behavior in  the industry, in general, and the resulting price levels in par­

ticular. See Ca c h o n  (2003) for a recent survey. Little remains known, however, about 

how prices should be set in a competitive environment, in the simultaneous presence 

of two other major complications:

(i) time dependent demand functions and cost parameters, and

(ii) scale economies in  the operational costs

In contrast, progress has been made in  addressing either one of these factors by 

itself.

For example, Be r n s t e in  and Feder g r u en  (2003) address a setting where each firm  

incurs fixed as well as variable procurement costs along with (linear) inventory carrying 

costs. However, the model assumes an infinite horizon setting w ith time-invariant de­

mand functions and cost parameters. Here the long-run average operational costs are 

given by the simple closed-form Economic Order Quantity (EOQ) cost function, i.e. the 

costs are given by the sum of a term that is proportional w ith the demand value itself 

and one that is proportional w ith the square root of the demand value, thus reflect­

ing scale economies. Ca c h o n  and Harker  (2002) similarly consider, fo r an industry 

w ith two firms, a setting with a single  set of time-invariant demand functions and 

w ith  a closed form  cost function given by a concave power function of the demand 

volume, (possibly in  conjunction w ith a linear cost component), once again to reflect 

scale economies. Other than the EOQ-cost model above, the authors show that their 

cost structure arises in a specific service competition model.

A t the same time, a stream of marketing papers address competitive pricing prob­
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lems under time-dependent demand functions, however w ith simple linear cost func­

tions, and under the assumption that each period’s demand is procured in the same 

period, i.e. no inventories are carried. Theses paper include Ka l is h  (1983), Elia s h b e r g  

and Je u l a n d  (1986), Clarke and Do la n  (1984), Ra o  and Bass (1985), and Do c k n e r  

and Jo rg ensen  (1988). See Elm a g h r a b y  and Ke sk in o c a k  (2003) for a survey. Perakis  

and So o d  (2003, 2004) and Ka c h a n i, Pe rakis  and Sim o n  (2004) also address competi­

tive pricing problems under time-varying demand functions. Since each firm  starts the 

planning horizon w ith a known inventory and inventories can not be replenished at any 

time during the horizon, these models consider no replenishment costs.

This paper appears to develop the first competitive pricing model which combines 

the complexity of time-varying demand and cost functions and that of scale economies 

arising from dynamic lo t sizing costs. Each firm  can replenish inventory in each of the 

T periods into which the planing horizon is partitioned. Fixed as well as variable pro­

curement costs are incurred for each procurement order, along w ith inventory carrying 

costs. Each firm  adopts, at the beginning of the planning horizon, a (single) price to 

be employed throughout the horizon. Based on each period’s system of demand equa­

tions, these prices determine a time series of demands for each firm, which needs to 

service them w ith an optimal corresponding dynamic lo t sizing plan. Scale economies 

always create major analytical complications in  the study o f price equilibria, see e.g. 

V iv e s  (2000) and Ca c h o n  and Ha rk er  (2002). In our case, the problems are com­

pounded by the fact that the cost structure can not be represented as a closed form  

analytical function of the (time series of) demand volume(s).

We model each firm ’s time dependent demand function as an affine transformation
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of a basic time-invariant demand function of general structure, i.e. the time invariant 

demand function is multiplied by a firm- and period-dependent ‘seasonality’ factor and 

shifted by a (firm- and period dependent) ‘seasonality’ term. This general framework 

includes the special cases of multiplicative seasonalities and additive seasonalities.

We establish the existence of a price equilibrium and associated optimal dynamic 

lotsizing plans, under m ild conditions and employing a close approximation for the 

optimal lotsizing costs. We also design efficient procedures to compute the equilibrium 

prices and dynamic lotsizing plans. Finally, we characterize how the equilibrium is 

affected by changes in various cost and demand function parameters. Much of the 

analysis focuses on an individual firm ’s best response problem, i.e. the characterization 

of the optimal price and lo t sizing strategy, in response to a given set of prices adopted 

by the firm ’s competitors. This best response problem is of interest in  its own right. For 

the case of multiplicative seasonalities and constant setup costs, we design an efficient 

algorithm whose computational effort involves 0 ( T 2) elementary operations and O(T)  

maximizations o f a single variable concave function. (For many classes o f demand 

functions, these maximizations can be performed in  closed form). For the general 

model, we develop an alternative solution method whose efficiency is demonstrated via 

a numerical study. The algorithms for the best response problem are used repeatedly 

in  the procedure which computes the overall price and lotsizing equilibrium in  the 

industry.

The numerical study, in  addition, reveals the following insights: contrary to fo lk­

lore, it  is not always best for a firm  to operate under time-invariant demand functions 

or cost parameters. Even in equilibrium, all firms in  the industry may be better off un­
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der certain types of seasonality patterns in the demand or cost parameters. When the 

above mentioned m ild existence conditions for a (unique) equilibrium fail to hold, the 

industry may switch from having a unique equilibrium to either having none or having 

multiple equilibria, depending on which seasonality pattern prevails.

One of the most fundamental assumptions in our model is that each firm  maintains 

a constant price throughout the sales season. In many industries this is the practice, 

either because mid-season price changes can not be implemented (e.g. catalog sales) 

or because they are managerially undesirable. For example, in many retail operations 

it  is considered unacceptable to raise prices during the season and at most one or two 

markdowns in  a single season are as much as contemplated. Empirical analysis has 

documented that prices for certain goods are extremely ‘sticky’, i.e. they change very 

slowly over time, i f  at all. Ca r l to n  (1986), for example, has investigated price data 

fo r industrial buyers over a 10 year period and has concluded that the price rig id ity in 

many industries is striking. Ka s h y a p  (1995) analyzed the data from catalog sales and 

observed that the prices typically remain constant over several seasons, beyond the 

total of a year. As a third example, Ce c c h e t t i (1986) has studied newsstand prices for 

some 40 American magazines over a period of close to 20 years. This author concluded 

that prices exhibited remarkable rig id ity to the extent of dropping in  real (i.e. inflation 

corrected) value by as much as a quarter before a price adjustment is implemented. See 

Ba r r o  (1972), Sh e s h in s k i and Weiss (1977, 1983), and Ca p l in  and Le a h y  (1991) for 

theoretical models explaining price rigidity. Finally, Bl in d e r  e t  a l  (1998) document 

and explain the multitude of reasons why companies maintain ‘sticky’ prices.

(As demonstrated below, at least the best response problems are considerably eas­
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ier under the alternative assumption where prices may be chosen and varied indepen­

dently in each period.)

The above not withstanding, we hope that our work w ill be extended to allow for a 

lim ited or an arbitrary number of price changes.

Beyond the competition models mentioned above, we now give a brief review of 

other literature that is relevant to our work. Even w ithin the context of optimization 

models w ith a single decision maker, the integration of pricing and inventory strategies 

has only recently received the attention it deserves, even though the seminal papers 

on dynamic lot sizing by Wa g n e r  and Wh it in  (1958, 1959) and Wa g n e r  (1960), 45 

years ago, already addressed the need to integrate pricing and production planing de­

cisions. We refer to Eliashberg  and Ste in b e r g  (1993) for a survey of early work and 

to El m a g h r a b y  and Ke s k in o c a k  (2003) for a more recent survey.

Th o m a s  (1970) addressed the dynamic lo t sizing problem in which each period’s 

demand depends (exclusively) on the price charged during this period according to a 

period-specific demand function. Assuming prices can be changed arbitrarily from one 

period to the next and that demand in  a given period is independent of the prices 

offered in  other periods, the author shows that an optimal plan can be found by a 

simple extension of the classical shortest path method by Wa g n e r  and Wh it in  (1958).

As in  the classical dynamic lo t sizing problem w ith exogenously specified demands, 

it  is easily verified that replenishment orders should only be placed in periods w ith zero 

starting inventory. In view of this observation, the optimal procurement plan can thus 

again be described as the shortest path in a network in  which each period is represented 

as a node and traversing an arc from period i to period j  corresponds w ith the decision
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to satisfy all demands in  period i, i + 1,... , j - 1 from a single order delivered in  period i. 

The only difference w ith the classical Wa g n e r -Wh it in  shortest path procedure is that 

evaluation of the (optimal) cost or profit value of any arc ( i j )  now involves optim izing 

a closed form  expression over the prices in periods i, i  + 1 ,... , j  -  1. Thus, dynamic lot 

sizing problems w ith arbitrary time-dependent prices are radically simpler than under 

the requirement that a single constant price be used.

The best response problem which arises w ith in our competition model was first ad­

dressed by Ku n r e u t h e r  and Sc hr ag e  (1973). These authors propose a heuristic pro­

cedure which also generates an upper and lower bound for the optimal price. Gilb e r t  

(1999) considers the special case of the best response problem in  which only multi­

plicative seasonalities prevail and all cost parameters remain constant over the entire 

planing horizon. One of our procedures for the best response problem is based on 

Gil b e r t ’s approach but reduces the computational complexity by an order of magni­

tude (0 (T 2) compared to 0 (T 3) complexity), wh ile addressing more general parameter 

settings. This complexity reduction is particularly important in  our competition model 

where best response problems need to be solved repeatedly and for each of the N  firms 

in  the industry.

The remainder of the Chapter is organized as follows: In Section 5.2 we specify 

the general competition model and the notation. Section 5.3 is devoted to the best 

response problem which arises under multiplicative seasonalities and constant set-up 

costs. Section 5.4 addresses the fu lly general response problem. The equilibrium anal­

ysis fo r the competitive model is carried out in  Section 5.5. Section 5.6 completes the 

paper w ith  a numerical study.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

119

5.2 Model and Notation

We consider an industry w ith N  firms, each selling a distinct item or product brand. 

We refer to the item sold by firm  i  as item i = 1 ,... , N. The different items are (close) 

substitutes of each other, e.g. different brands of 19” television sets, digital cameras, 

notebook computers, sport u tility  vehicles, tooth paste etc. We consider a planning 

horizon of T periods. If  the firms face a natural sales season introducing a new model 

or variant in  each season, a natural choice of T arises, e.g. T = 52 weeks in  the auto­

mobile manufacturing industry operating with a weekly production and sales schedule. 

Otherwise T is chosen large enough to ensure that the firms’ decisions pertaining to 

the in itia l periods of the planning horizon are not affected by this truncation of the 

planning process.

Each firm  selects a (single) price to be used though out the planning horizon. (See 

Section 1 for a discussion of this assumption.) Each firm ’s demand in each period 

depends potentially on the complete vector of prices selected in  the industry according 

to a general time-dependent demand function. Thus, let

p l = the price charged by firm  i  = 1 ,... ,N

d\ = the demand faced by firm  t in  period t = 1 ,... ,T

= d l i p 1, . . .  , pN)

The time-dependence of the demand function is characterized by additive season­
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alities as well as multiplicative seasonality factors, i.e.

d\ (p)  = a\  + f t 5 l (p) V i  = 1 ,... ,N; t  = 1 ,... ,T  (5.1)

w ith Sl (p) the deseasonalized demand function for firm  i, i = 1 ,N . The general

specification in  (5.1) contains two important special cases: (a) a purely additive season-
*

ality structure arises when all ftt = 1. In this case, the demand function o f a given firm  

undergoes parallel shifts as we move from one period to the next; (b) a purely multi­

plicative structure arises when all = 0; here, each firm ’s demand is scaled up (ftt > 1) 

or down ( f t  < 1) compared to the deseasonalized norm.

The deseasonalized functions 5i (p) are continuously differentiable, w ith  3 - < 0, 

i.e. a price increase results in  in  a decrease of the demand volume. Since the demand 

function 8i (p) is strictly decreasing in  p i , it  is possible to derive an inverse demand 

function = $(<5l ip~ '). We only assume that firm  i ’s revenue is concave in  the demand 

volume d \  i.e. f?'(<5'|p~l ) = 5l (].}(51\p~i ) is concave in  Sl . An important special case 

arises when all deseasonalized functions are linear:

5 l (p) = a 1 -  b l p i +  Y ,e)P i  i  = 1, - - - , AT, (5.2)
JH

Without loss of generality, we assume that

bi > Y ' 9 ij  , i = l ,  (5.3)
j + i

This standard assumption is often referred to as the Dominant Diagonal assumption.
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It merely precludes completely unrealistic situations where an across the board price 

increase in  the industry results in  an increase of a firm ’s sales volume. The firms 

procure their goods by a production and distribution process which, in  principle, allows 

for inventory replenishments at the beginning of each period. As in  standard dynamic 

lo t sizing problems, we assume that fixed as well as variable procurement costs are 

incurred as well as inventory carrying costs which are proportional to each end-of-the- 

period inventory. A ll cost parameters may fluctuate over the course of the planning 

horizon in  arbitrary ways. Thus let

K\ = the fixed setup cost for a procurement batch delivered to firm  i in  period t,

i  = 1 ,... ,N; t = 1 ,... , T

cj = the per unit procurement cost rate for a procurement batch delivered to

firm  i  in  period f, i  = 1 ,... ,iV; t = 1 ,... , T

h\ = the inventory carrying cost for each unit of item i  carried in inventory at the

end of period t, i = 1 ,... ,N\ t = 1 ,... , T

Each firm  i  thus selects a price p l as well as a complete procurement schedule for 

the entire planning horizon to support the demand stream jd £ (p )} which arises from 

the collective price choices. Note that his price p l affects the profits earned by all firms 

in  the industry via its impact on each firm ’s demand function and hence each firm ’s 

demand stream. At the same time, the procurement schedule selected by firm  i impacts 

only his own p rofit measure. It is thus possible to conceptualize the competition model 

as a single stage game between N  firms, in which each firm  makes a single competitive 

choice, i.e. its price level. The competition model may thus be viewed as an example of
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Bertrand price competition. (Alternatively, one may assume that each firm  i selects a 

basic deseasonalized target volume 5l . This results in  a vector of prices p which satisfy

the demand equations 51 = 5l (p), i  = 1 TV. We discuss this Cournot competition

variant at the end of Section 5.5). The game is characterized by the profit functions:

7Tl (p) = the profit earned by firm  i  under the price-vector p, assuming firm  i  adopts 

an optima! dynamic lot sizing schedule to respond to the demand stream

{dj(p) : t  = 1,... , r )

The profit function may be written in the form:

T
rcl (p) = p l d\ (p)  -  Cl (p) i  = l , . . . , N  (5.4)

t= i

where

CHp)  = the minimum total operating costs for firm  i  to service the demand stream 

{ d \ (p ) }. The difficulty in analyzing the competition model and in characterizing its 

equilibrium behavior, stems from the complexity of the cost functions Cl (p). Clearly, 

the function Cl (p) cannot be represented as an analytical closed form  expression. The 

function can be evaluated for any given price vector p in  0  (T2) time using the standard 

Wagner-Whitin shortest path procedure and in  0 ( T log T) time by one o f the methods 

in  A g g a r w a l  and Pa r k  (1993), Fe d e r g r u e n  and T z u r  (1991), or V a n  H o e s e l  and 

W a g e l m a n s  (1992). Clearly Cl (p) depends on the price vector p ‘only’ through the 

demand sequence jd£(p) =

Lemma 5.1 Cl is a piecewise linear concave function o f the demand sequence
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j d\ = d\ (p) } .

Proof: Fix a price vector p e RN. Assume firm  i  chooses to replenish its inventory 

in  the set of periods 0  = {ty = l , !? , . . .  , t n }. It is well known that a zero-inventory 

ordering policy is optimal. This implies that the optimal cost under this sequence of 

order periods is given by:

n n  t(+ i-l
cHp I©) = S4 + S4 I  4(p)

J=1 i = i  r = t i

n
+ 1 I 4(4+1(p) + ---4+l_1(p)) (5.5)

1=1 r = t i

where tn+i  = T + 1. Finally, CHp) = m in jc U p l© ) |0  e 2f l  i.e. C‘ (p) is the

minimum of (2r  -  1) linear functions and is therefore concave in the vector

{ 4 : f  = 1 , . . . ,T } .  ■

As a corollary of the above Lemma we obtain that, i f  all demand functions are linear, 

the cost functions Cl {p) are piecewise linear and jo in tly concave in  the price vector

p, itself. Unfortunately, this characterization is by itself insufficient to conduct the

equilibrium analyses. First, concave cost functions reflecting economies of scale create 

major analytical difficulties in equilibrium analysis, see V iv e s  (2000) and Ca c h o n  and 

H a r k e r  (2002). Second, the fact that Ci (p) is not available in  closed form  generates 

additional complexities. Finally, O i p )  fails to be jo in tly  concave in  p fo r more general 

non-linear demand functions.

Before providing a complete characterization of the industry’s equilibrium behavior, 

we first analyze an individual firm ’s best response problem. Thus, for any i = 1 ,. . . ,  N, 

let
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n i (pi \p~l ) = the profit for firm  i when choosing price p \  given his competitors’ 

prices = (p 1, . . .  , p i_1,p ‘+1,. . .  , p N) and assuming firm  i minimizes 

operating costs to service the resulting demand stream |d l (p )}-

The optimal profit for firm  i, given his competitors choose prices p~l can then be 

written as:

7T*'(p l ) = m a x n 'fp 'lp  ! ) (5-6)
pi

We refer to the optim ization problem in (5.6) as firm  i ’s best response problem.

5.3 The best response problem under multiplicative seasonah- 

ties and constant setup costs

In this Section, we analyze a given firm  i ’s best response problem (5.6) in  the impor­

tant special case where only multiplicative seasonality factors prevail (a\ = 0) and 

where firm  i ’s setup cost remains constant over the course of the planning horizon

( k i = ■ ■ ■ = k \  d = f  4

Note first that under the above special structure, fo r any sequence of order periods 

0  = { t , . . . ,  t n } w ith n  setup periods (see (5.5)):

C ^p l© ) = + 8i ( p )
n  t i + i - l  n  t i+i -1

1=1 r = t i  1=1 r= t i

(5.7)
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so that

C '(p) = min C '(p |0 ) = m inm inC 'tp l© ) = m in in g 1 + 6l (p)Fn(T) \  (5.8)
0e2O T) n 0| n n I >

where

F^i t )  = minimum total variable procurement and holding costs in  periods {1 , . . . ,  t } 

for firm  i, assuming the firm ’s demand stream is given by the seasonality 

factors ... , and assuming that exactly n setups are performed in 

the first t periods t = 1 ,... , T; n  = 1 ,... , t, i  = 1 ,... ,N.

In the next subsection we develop an 0 (T 2) procedure to compute the matrix of

values = 1 ,... , T ;n  = 1....... r j .  Thus, assuming these values have been de­

termined, it  follows from (2) that the best response problem (5.6) reduces to:

tT*i (p~i ) = max m axj p ^ H p )  -  n K l -  5‘ (p )T £ (r ) |

= max m a x | ^X p i -  F^(T)

= max m axj |  X Pt j  -  F ^ D S 1 -  n ^ j

In other words, the best response problem reduces to T maximization problems

of a concave function of a single variable 5l . I f  the revenue function Rl (5l \p~l ) is 

strictly concave, its derivative RL ( - Ip ” 1) is strictly decreasing and has an inverse func­

tion (r 1) (- \p~1)- The maximizing value o f 5l in (5.9) is then given by 5 * l (n) =

(R1) 1 ( ^ f  Substituting this demand value into (5.9), we conclude that

the solution of the best response problem reduces to the determination of T closed

8i (pi \p~i ) - n & l  (5.9)
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form  expressions (for n  = 1 ,... , T) involving the inverse derivative revenue functions 

(R1) 1 (-1 P_t)- Assuming this function can be evaluated in  constant time, the best 

response problem can thus be solved in 0 ( T 2) time.

Example 5.1: Assume the deseasonalized demand functions 6l (p) are linear, as 

in  (5.5). This implies that at p l = [a 1 + Y.j+i 9)p* ~ <5l ] / b l , giving rise to a quadratic 

revenue functionRl (-\p~l ) and an optimizing deaseasonalized demand volume

5* l (n) =
V  + 9)p ’ b 'F ^ T )

2 Z t = i  Pt
(5.10)

and a corresponding price

a 1 + X  8jPj  -  <5** 
3+i

/ b l (5.11)

Substituting this value into (5.8), we obtain:

n * l (p l ) =

max
n=l , . . . ,T

S  (a* + Z j h  0 )p i ) -  ^ F k ( T ) -  n K l , i f  6 * l (n)  > 0 

- n K l , otherwise

(5.12)

which provides a closed form expression for the best response profit function in  terms 

of the values { F{(T),F2 (T) , .. .  ,F } ( r ) | .  ■
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An O (T2) procedure to compute the optimal lot sizing cost when restricted to 

a given number of order periods

In this Subsection, we develop an 0 (T 2)-procedure to compute the values 

|F^CD : n  = 1 ,... , 7 1 we need in the evaluation of (5.9). As mentioned in the in tro ­

duction, this procedure bears sim ilarities to the 0 (T 3)-procedure in  G ilb e r t  (1999) 

for the case where all cost parameters are assumed to be constant over the course of 

the planning horizon. (G ilb e rt  addresses a single firm  problem.) The procedure, in 

fact, computes all entries of the matrix F d= [F^ i t )  : n  = 1 ,... , F; t = 1 ,..., r | ,  row 

by row, starting w ith the values |F { ( t ) : t  = l , . . . , r | i n  the first row. To simplify the 

expressions we drop the superscript in this subsection. We first need the following 

notation:

B(t) = Zk=i fik = the cumulative demand factors over the first t periods

Cki = Ck + h i  + ■ ■ ■ + hi - 1  = the variable cost of procuring a unit in period k and

maintaining it  in  inventory un til period l (k < I)

=  Ck,i- i  + h i -1

H i t )  = Zk=i hk = the cost of carrying a unit of in stock from periods 1 un til the

beginning of period t + 1 

= H i t  -  1 ) + h t

S{k, t )  = the total inventory carrying cost in periods k,k + 1 ,... , t when placing an 

order in  period k to meet the cumulative demand in  periods k  t.

si t )  = 5(1, t) = si t  — 1) + PtHi t  -  1).
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C(k) = CkT ~ h i r  = C k - H ( k - l )

(Note for all k <1, C(I) -  C(k)  represents the additional cost of procuring a unit in 

period I as opposed to procuring it  in  the earlier period k and keeping it  in  inventory 

un til (at least) period I.)

Note that the first row of the matrix F, i.e. the values {F\ ( t ) : t  = 1 ,... , T} are easily 

obtained in  0 (F ) time from the recursion:

F i ( l ) = c i0 i ;  F i( f ) = F i( t -  1) + CiPt + PtH( t  - 1 ) ,  t = 2. . .  , T  (5.13)

Assume therefore that the first (n -  1) rows of F have been calculated. We now show 

how the n - th  row can be determined in 0(T)-tim e by a ‘list-based’ procedure, sim­

ilar to that in  Federgruen  and T z u r  (1991) for the unrestricted lot sizing problem.

(The procedure is, in  fact, considerably simpler than the one in  Fed e r g r u e n  and T zu r  

(1991), as we take advantage of the absence of setup costs). To this end, let for all 

t = 1 ,... ,T.

Fn ( l , t )  = the minimum cost in  periods 1 ,... ,f, under exactly n  orders, when period 

I is the last order period preceding period t .

To determine whether for a given horizon t = 1 ,T, some period I is a better 

‘last’ order period than some earlier period k < I, we consider the difference function 

An,k,i(t) = Fn (k, t )  -  Fn (l , t ).  Observe that

F„ ( l , t )  = F n - i ( l -  1) +S( l , t )  + C i [ B ( t ) - B ( l -  1)] (5.14)

Fn (k, t )  = Fn- i ( k - l ) + S ( k , t ) + c k[ B ( t ) - B { k - l ) ]  (5.15)
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Subtracting (5.14) from (5.15), we obtain after some algebra that

An,k,l(t) = An(k, I) + [C(k) -  C(l ) ]B( t )  (5.16)

where

An (k, l )  = F n - i ( k - l ) - F n- i ( l - l ) + s a - l ) - s ( k )

+C(k) [B( l  -  1) -  B(k -  1)] + 0kH(k  -  1) (5.17)

+B(k -  l ) (C( l  -  1) -  C(k))

Thus, the difference function An<k:i ( t )  depends on the cost and demand parameters in 

the periods 1+1 ,. . . ,  t only via the single characteristic B(t), i.e. the cumulative demand 

factor in  periods 1 ,... , t. Furthermore, it  is easy to characterize for which values B(t),  

k dominates I as a last order period. Consider the following two cases:

(I) C(k) < C(i): The condition is equivalent to ck,i < ck; in this case, it  is never 

strictly better to use I as the last order period rather than an earlier period. To show 

this, consider an optimal zero-inventory ordering plan for some planing horizon t > I, 

w ith I as the last order period. Since ckti < ci, costs do not increase when placing the 

order in  the earlier period k. The resulting policy may fail to be a zero-inventory policy 

but via a series of perturbations it  can be transformed into a zero-inventory policy of 

equal or lower cost w ith the same set of order periods, i.e. w ith a period before I as the 

last order period.

(II) C(k) > C(l): In this case, it  follows from (5.17) that I is a strictly better last order
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period than k i f  and only i f

B(t) > Rn (k, I) d= An( k , l ) / [ C ( k ) - C ( l ) \  (5.18)

Since each of the values in {Fn ( t ) : t = 1 ,... , T} represents the cost of a zero-inventory 

policy, these values are completely characterized by determining for all t = 1 ,... , T: 

ln (t) = the optimal last order period for the time interval [ l , f ] ,  when the total 

number o f orders in  this interval must equal n, i.e.

Fn (t) = F n {ln ( t ) , t )  = m in  Fn( l , t )  (5.19)
i<t

(If more than one period qualifies as an optimal last order period, define ln (t) as the 

smallest such period). Clearly Fn (t) = oo, i f  t < n, so we can restrict ourselves to the 

case where t > n.

To construct the lis t { ln ( t ) : t = 1 ,... , T}, our procedure, iteratively for 

j  = n , ... , T, constructs an (ordered) list

£ n (j )  = { i : n  < i  < j  : i  is the (lowest indexed) best last order period for some 

planning horizon t > j ,  w ith potential cumulative demand factor B(t) > B( j ) } ,  along 

w ith an ascending lis t of critical cumulative demand values

{B( j )  = r (  1) < r (  2) < • ■ ■ < r ( m) } ,  w ith m  = \ £ n( j )  I- The fc-th element of the list 

£ n ( j ) is the best last order period (under the restriction of n  orders) for any horizon 

t > j  w ith cumulative demand r { k )  < B(t) < r ( k  + 1), k = 1 ,... , m.  (Here, r ( m  + 1) = 

oo.) Thus, under the restriction of n orders, £n ( j )  is a list containing all periods among
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the firs t j  periods, which may arise as an optimal last order period for some horizon 

t > j .  In constructing this list, we treat all future demand factors Pj+1 , . . .  , d r  as 

unknown.

Clearly, the list { ln ( j )  ■ j  = 1, . - . ,  T]  of actual optimal last order periods is simply 

the lis t of the first elements of the respective lists { £n ( l ) , £ n (2), . . .  , £ n (T)}.

The following lemma identifies an effective way to ‘update’ the lists 

{ £n ( j )  : j  = I , - .  - ,T}.  Clearly, £ n(n) = {n} w ith r { n )  = B(n).

Lemma 5.2 F i x j  = l , . . . , T  and let £ n ( j )  = ( i i , . . .  , i m)

(a) The periods in the list £ n ( j )  are distinct.

(b) £ n ( j  + 1) ^  £ n ( j ) u { j  + 1}

(c) The periods appear in the list £ n ( j )  in descending order o f their C values, i.e. 

C( i i )  > C(i2) > ■ • ■ > C( im)

(d) I f  C{ j  + 1) > C( im), then the list £ n { j  + 1) = £ n (j )  and the critical values 

r (  1) , ... , r (m )  remain unchanged as well.

(e) I f C ( j  + 1) < C(im), period j  + 1 enters at the bottom o f the list. To determine the 

corresponding r  (•) -value, as well as which o f the existing elements o f the list are to 

be removed, compute sequentially fo rk  = m , m - 1,... 1 the root r *  = Rn ( i k d  + 1) 

and eliminate period ifc from the list as long as r *  < r (k) .  The last computed root 

r *  h a s r* > r ( k )  and is ther(-)-value fo r period j  + 1.

Proof, (a) Assume, to the contrary, that some period i  appears more than once 

in  the list, i.e. it  is the best order period in  two distinct intervals for the cumulative
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demand factor B(t),  but for some in between values of Bi t )  some other period k is a 

better last order period. This implies that the difference function Anx i ( t ) ,  viewed as a 

function of B( t ), switches signs at least twice. Since the function is linear in  B(t)  this 

results in  a contradiction.

(b) Immediate.

(c)-(e): These parts are proven by induction w ith respect to j  = 1 ,T.  Assume 

therefore that for the j- th  list £ n(j ) ,  C{ i \ )  > C (i2 ) > ■ • • > C( im). I f  C i j 4-1) > C (im), 

we have shown under (I) above, that period i m is a better last order period than period 

j  +1 for any future horizon t > j .  This proves part (d). Since the list remains unaltered, 

its elements continue to be ordered in decreasing order of their C () -values. If  C i j  +1) < 

C( im), C i j  + 1) is smaller than the C(-)-value of all elements of the list £ n (j),  so that 

i j  + 1) is the best last order period among all periods 1 ,... , j  + 1 for B( t )-values that 

are sufficiently large. This implies that i j  + 1) is to be added to the lis t and since, by 

part (a), it  enters in  the lis t only once, it  enters at the bottom of the list. This implies 

that the elements of the lis t £ n i j  +1) continue to be ranked in  decreasing order of their 

C(-)-values, regardless of what elements of the lis t need to be eliminated, i f  any. This 

completes the induction proof for part (c). To verify the validity of the list-updating 

procedure in  part (e), assume first that r *  = Rn ( im, j  + 1) > r i m ) .  For B( t ) > r * ,  

period ( j  + 1) is a better last order period than im and the lis t £ n ( j )  reveals that the 

latter dominates all other periods in  {1 ,... , j } on this half line. Thus, for Bi t )  > r * , 

period (j+1) is the best last order period among all of the first (j+l)-periods. On the 

other hand, for r i m )  < Bi t )  < r * ,  period im dominates period (j+1) as well as all 

periods in  {1 ,... , j } ,  so it is the best last order period among the first (j+l)-periods. It
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is also easily verified that each of the previous elements ik,k < m  in  the list continues 

to dominate on the interval [ r ( k ) , r ( k  + 1)] even when considering period (j+1) as an 

alternative. We conclude that, in this case, the list £ n ( j  + 1) is obtained from the list 

£ n (j ) ,  simply by appending period ( j  + 1) to its tail with g (m  + 1) = r * .

Consider now the remaining case where r *  = Rn ( im, j  + 1) < r ( m) .  In this case, 

period i m is dominated by period ( j+ 1 ) for B(t) > r ( m) ,  while it  is dominated by some 

period in  {1 ,... , j }  for B(t) < r ( m) .  This implies that period i m is to be eliminated 

from  the lis t and the updating process can now proceed with this curtailed list. ■ 

Remark: Upon completion of the list £ n ( j  +1), it  is advisable to consider the actual 

cumulative demand factor value B( j  + 1) and eliminate from the front of the lis t all 

elements w ith an r (  ■)-value below B( j  + 1). (After all, all future horizons t > j  + 1 have 

B ( t ) > B ( j  + 1).)

The following summarizes he fu ll algorithm to determine the complete matrix F = 

{Fn (t) : n  = 1 ,... ,T ; t  = 1 ,... ,T }

We maintain at each iteration on ordered list

£  = ( {N[FIRST] ,N[FIRST  + 1] JV[IAST]}) such that for j  = 1 T, £ = £ n (j )

at the end o f the j-th  iteration. The records in this lis t are numbered FIRST, FIRST+1.......

LAST for appropriate values of FIRST and LAST. The fc-th record (FIRST < k < LAST) 

contains two numbers {N[k ] , r ( k ) } .

As explained, periods are eliminated from either the front or the tail o f the list 

£ n (■). We therefore distinguish between two elementary procedures:

(i) DELTOP: this procedure deletes the first record of the lis t and sets FIRST := 

FIRST=1;
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(ii) DELBOT: the procedure deletes the last record of the list and sets LAST := LAST-1;

Algorithm 1 Algorithm Restricted Lot Sizing
l F i ( l ) := C\Pi
2 for j  = 2 : 1 : T do
3 B( j )  : = B U - 1 )  + Pj
4 H ( j )  : = H ( j - l )  + hj
5 C(j )  '■= Cj — H ( j  — 1)
6 s( j )  := s ( j  -  1) + P j H ( j  -  1)
7 Fi ( j )  := F i( j  -  1) + ciPj  + P j H (j  -  1)
8 end for
9 for n  = 2,1, T do

10 for j  = 1, l , n  -  1 do
11 Fn(j) := 00
12 FIRST := 1
13 LAST := 1
14 N[FIRST]  := n
15 r [FIRST]  := B(n)
16 r [ F I RS T +  1] := oo
17 end for
18 for j  = n, 1, T do
19 while r[F IR S T + 1] < B( j )  do
20 DELTOP
21 end while
22 if C(j )  < C(LAST) then
23 while Rn(N[LAST] , j )  < r (LAST)  do
24 DELBOT
25 r(LA S T  + 1) := Rn(N[LAST],  j )
26 N[ LAST+  1] : = j
27 LAST := LAST + 1
28 end while
29 l : =  ln ( j )  := N[FIRST]
30 Fn( j )  := Fn- i ( l )  + ci (B( j )  -  B(l  -  1)) + s ( j ) -  s(l) -  H ( l  -  1 ) (B( j )  -  B(l ))
31 end if
32 end for
33 end for

It is easily verified that the computation of each row in  the matrix F, i.e. the ef­

fo rt expended in the outer ‘for do’ loop in Step 1 is 0(T) .  (Note that the procedure 

DELTOP and DELBOT are invoked at most (T-n+1) times during this loop, since each 

period in  {n, . . .  ,T}  can be eliminated at most once, either by DELTOP or by DELBOT.
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Both procedures are o f complexity 0 (1 ) as is the computation of the roots Rn ( l,  1) via 

(5.18)).

Example 5.2: Consider an industry w ith N  = 3 firms and deseasonalized demand 

functions:

The firms face a planning horizon of T = 54 periods. We consider six different m u lti­

plicative seasonality patterns { f i t : t = 1 , . . . ,  54}, which are common to all three firms, 

as follows:

(I) (Time-invariant demand function) /?t = 1 ; t = 1 , . . . ,  54

(II) (Linear Growth) 0t = 0.25 + 1 .5 ^ p  ; t = 1 ,... , 54

(III) (Linear Decline) jSt = 1.75 -  1 . 5 ^ ^  ; t  = l , . . . , 5 4

(IV) (Holiday Season at Beginning of Planning Horizon)

5\ (p)  = 400 -  10pi + pz + ps (5.20)

8 2 (p) = 250 + pi  -  12pz + 10j?3 (5.21)

53(p) = 250 + pi  + 10p2 -  12p3 (5.22)

114 + 5 7 0 1 )  , t  -  1 , . . .  , 6

(5.23)
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(V) (Holiday Season at End of Planing Horizon)

Pt = ^  + | f j j ( t - 4 3 )  , t  = 43 ,... ,48 

f f | - | ^ ( t _ 49) , t = 49,... ,54

(5.24)

(VI) (Cyclical Pattern)

Pt  =

0.25 + 0 .75 (1 -1 ) , t = 1 ,... , 3

1.75 -  0 .7 5 ( t-4 )  , t  = 4....... 6

^tmod6 >f = 7........ 54

(5.25)

where t mod 6 denotes t modulo 6. Note that the average seasonality factor 

i 4 Z t = i  P t  =  P =  1 in  all six patterns (I)-(VI). The first pattern reflects a situation where 

demand functions are time-invariant and the second (third) pattern one w ith linear 

growth (decline). The fourth and fifth  pattern represent a planning horizon w ith a 

single season o f peak demands either at the beginning or at the end of the planning 

horizon. Finally, the last pattern (VI) is cyclical w ith a cycle length o f 6 periods, such 

that demands in the two middle periods of each cycle are 7 times their value in the first 

and last period, while pt = 1 in  the remaining two periods of the cycle.

A ll three firms share the same cost parameters which are time-invariant: K\ = 

1000; c\ = 15; h\ = 5 for all i  = 1 ,... , 3; t = 1 ,... , 54. Since the firms have iden­

tical c- and h- values and the firms have identical seasonality patterns, they also share 

the same values for {F £ ( t ) : t = 1 ,... ,54}. In Figure 5.1(a) and 5.1(b) we display the 

values {Fn (54)} as a function of the permitted number of setup periods n  = 1 ,... , 54,
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Figure 5.1(a): Fn (54) as a function of the number of setups periods n, patterns (I)-(III)
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fo r the six seasonality patterns (I)-(VI). Observe that the Fn( 54)-values are significantly 

different across the six patterns, for small numbers of permitted setup periods, but the 

relative difference gradually decreases as n  increases. Since the parameters c\ param­

eters are constant over time, the variable procurement cost component in  {Fn (54)J is 

identical for all n  = 1 ,... , 54 and for all seasonality patterns (I)-(VI). A ll differences 

in  the {Fn(54)} values are therefore attributable to differences in the holding costs. 

These, of course, decline to zero as n increases to 54. For all n  > 7, the cyclical pattern

(VI) is the least expensive to service and the time-invariant pattern (I) the most expen­

sive. This contradicts common folklore which assumes that optimal costs are achieved 

when one is facing a smooth, time-invariant sales pattern.

The curves {Fn (54) : n  = 1 ,... , 54} can be approximated very closely by curves of
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Figure 5.1(b): F„(54) as a function of the number of setups periods n, patterns
(IV)-(VI)
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the shape

F'n( 5 4 ) ~ ( X t i ) \ ( c i + ni) + ' ^ n  = 1 ,... ,54 (5.26)

for appropriate constants n l , > 0. For example, ql and can be chosen to m in­

imize the sum of squared differences between the left and the right sides of (5.26). 

For pattern (I) and (II), for example, we thus obtain (r?1, ^ 1) = (-2.275,134.595) and 

(q6,£ 6) = (-3.378,133.810) w ith average relative differences between the exact and 

the approximate curve of 0.6% and 3.3 %, respectively. We have found that approxima­

tions of the type (5.26) are, in fact, very close, across the board, for any combination of 

cost values and seasonality patterns.

Several facts explain the extreme goodness of fit: in  our numerical experience, the 

function Fn (T) is always convexly decreasing in  n. We conjecture that this is always 

the case. To motivate this conjecture, note that Fn (T ) may be viewed as the value of 

an n-median problem. Once again, it  is unknown whether the optimal cost-value of 

an n-median problem is convex in n, but it  is known from Co r n u e j o l s  et al. (1977), 

N e m h a u s e r  et al. (1978) and N e m h a u s e r  and W o l s e y  (1988) that the greedy heuristic 

solution for the n-median problem is a very close approximation (both in  terms of worst 

case and average performance) and the cost value of this greedy heuristic solution is 

convexly decreasing. The greedy heuristic, applied to our lot sizing problem, adds in 

the n  + 1st iteration a new setup period to the n  periods selected in  the first n  periods 

which results in  the largest cost decrease. The approximation (5.26) w ill be used in the 

equilibrium analysis in  Section 5 .5.
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Figure 5.2: Optimal profit for firm  1 as a function of permitted number 
of setups under pattern (I) and (VI) when K\ = 1000
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We now turn to the best response problem firm  1 faces when both of his competi­

tors choose a price value of $30. Based on (5.11) and (5.12), Figure 5.2 exhibits the 

optimal profit 7r*‘ (n) for pattern (I) and (VI) as a function of the permitted number 

of setups n. The globally optimal prices which solve the best response problem are 

$31.75 and $30.89 and correspond with a lo t sizing schedule w ith n  = 27 for pattern 

(I) and n  = 3 5 for pattern (VI).

5.4 The Best Response Problem: The General Case

In the Section we address the best response problem (5.6) for the general case where 

additive as well as multiplicative seasonalities exist and where all cost parameters vary 

in  arbitrary ways over the course of the planning horizon. In the most general case, no 

solution procedure appears to exist, which, in  the worst case, involves a polynomially 

bounded number of elementary operations or evaluations of a simple, analytical closed
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form  function. However, a highly efficient procedure can be developed based on the 

following result:

For any given set of periods 0  e let T l ( ® \ p ~ l ) = |pM® is an optimal set

of order periods to service the demand stream { d \ ( p )  : t  =  1 , ,  T } |.

Lemma 5.3 Fi x  i  = 1,.. .  , N a n d  a  v e c to r  p ~ l o f  p r ic e s  f o r  f i r m  i ’s c o m p e tito rs

(a ) T l ( & \ p ~ l ) is a  c losed  in te rv a l.

(b ) L e t [ P q, p [ ]  de no te  the  c losed  in te rv a l T l { @ ° \ p ~ l ). L e t  6 q =  6 1( P q \p ~ 1) a n d  

5 \  = 5 l ( p \ \ p ~ i ). F irm  i ’s p r o f i t  is a  con cave  d if fe re n t ia b le  fu n c t io n  o f  6 ' o n  th e  in te rv a l

Proof: Fix 0° e 2(1 r } . We first show that T i (®°\p~i ) is convex. Thus, let p\ <

p \  e P l(0 ° \ p ~ l ) and assume to the contrary that for some p \  with p \  <  p \  <  p l2, 

0° fails to be an optimal set of order periods. Let 0 1 be a sequence of order periods 

which is optimal to use under price level p \ .  Note from (5.5) that C L( p \ & )  is an a ff in e  

transformation of the deseasonalized demand function Si ( p ) ,  i.e.

C l ( p |0) = A (0 ) + B ( & ) 5 l ( p ) ,  with A (0) and B(0) constants, in d e p e n d e n t of any 

price choices. Thus, 0 { p |0°) -  C l { p 101) = [A (0°) -  A f© 1)] + [B (0°) -  B (0 1)]5 i (p) 

is a m o n o to n e  function of p l , since 5 l ( p )  is a s t r ic t ly  d e c re a s in g  function o f p l . Yet 

^ ‘ ((P i.P -1)!©0) -  C l { p \ , p ~ l ) \ Q)  < 0, since p \  e T l { @° \ p ~ t )

O d p l p - 1)]®0) -  O d p l p - 1) I©1) > 0, since p\ £ T H ® 0 \p~l ),P i e ^ (© M p -4) 

C '((P 2 -P^‘ )I@°) -  Ci ((p l2,p~ i )\@i ) < 0, since p \ e T l (®°\p~l ), indicating that this 

difference fimction fails to be monotone in  p \  thus resulting in  a contradiction.

Since T l ( @ ° \ p ~ l ) is a convex set, it  is an interval. To show that that his inter-
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val is closed, consider a sequence {pfc}fc=1 with p k e T l ( ® ° \ p ~ l ) for all k = 1 ,2 ,... 

and linifc- ,0 0 p \  =  p l -  Thus, C l ( { p lk , p ~ l ) |0°) < C l ( ( p lk , p ~ l ) |0) for all order period

sequences 0  e 2{1 T i. Taking lim its on both sides of the inequality and using the

continuity in  p  of the C j(p |0) function we conclude that the lim it p* satisfies the 

inequality as well, i.e. p* e T ( ® ° \ p ~ l ).

(b) Per definition, on the interval P l (0 ° |p _I), C l ( p )  = C l ( p |0°)

= A (0°) + B ( ® ° ) 5 i ( p ) ,  so that f irm i’s profit T l i ( 5 i \ p ~ i ) =  R i ( 5 i \ p ~ i ) -  A ( @ ° )  - B ( @ ° ) 8 i 

is a concave function of 5 l . u

Lemma 5.3 suggests the following best response algorithm. Once again, fix 

i  = 1 ,... ,N, p ~ l and a (small) precision number e > 0.

Algorithm: Best Response Problem

Step 0 (Initialization): Set I := 1 ;tt*  := 0, p \  := in;<5i = 5l ( p i lp -1)- 

Step 1 (Iterative Step): For p l =  p \  + e, determine an optimal sequence o f order pe­

riods 0 1 as well as the coefficients A { ® l ) , B ( ® 1), i.e. C l ( p \ @l ) = A ( ® 1) + B ( ® l ) 8 l ( p )  (e.g. 

w ith the O (T logT) method in Federgruen and T zu r (1991)). With simple bisection, 

determine w ith in e, p lu  = max jp *  < p '^ IO *  is an optimal sequence of order periods 

fo r the price p l j ;  <5̂  = S 'ip ^ lp ^ 1). Determine

t t *  = maxSiu<si:sSj jR l (6l \p~l ) -  A ( @ l ) -  B(®l )8 l |  where the function w ith in curled 

brackets is concave in 5l . I f  t t * > t t *  then w* := t t *  .

Step 2: If p lu <  p ^ ^  then begin I  := I  +  1; p \  =  p h \ 5| = 5 lu \ return to Step 1 end

This Algorithm thus partitions the complete price interval [p lmin, p lmzx] into L > 1 con-
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secutive subintervals, such that on each subinterval a given sequence of order periods 

0  remains optimal. On each interval the profit function is a simple differentiable con­

cave function of 5l whose maximum can be found by comparing the values at the end 

points w ith that in  the (at most) single stationary point where the derivative o f the 

pro fit function equals zero.

If  the interval [pjmn, Pmaxl is partitioned in  to I  subintervals, i.e. i f  Step 1 is 

repeated I  times, the total effort to identify the end points of the subintervals is

T log T j  while the effort to optimize the profit-function on each 

of the subintervals amounts to L maximizations of a differentiable concave (closed 

form) function of a single variable.

Example 5.3: Consider the previous example, however w ith additive rather than 

multiplicative seasonality terms, which are again identical to all three firms, i.e. let 

f}\ = 1, and a j = -100 + ™ (t  -  1), t = 1 ,... , 54.

Thus, each period a firm ’s demand function is shifted upwards by a constant 

amount and ^  £ t= i cxlt = 0. Consider, again, firm  l ’s best response problem which 

arises when his competitors adopt a price of $ 30, i.e. p i = P3 = 30. In Table 1, we 

display the intervals identified by the ‘Algorithm Best Response Problem’, along with, 

for each of the intervals, the optimal price for firm  1, corresponding pro fit level and 

the number of setups periods in  the last column which is optimal for this interval.

O I log2 P m a x -P r r
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Table 5.1: Intervals generated by Algorithm ‘Best
Response Problem’ for firm  1 in Example 3

LB UB O ptP rice P ro fit Setups

0.000 16.374 16.374 75730 54
16.384 17.141 17.141 76440 53
17.151 17.878 17.878 77110 52
17.888 18.640 18.640 77750 51
18.650 19.404 19.404 78350 50
19.414 20.151 20.151 78920 49
20.161 20.911 20.911 79450 48
20.921 21.664 21.664 79940 47
21.674 22.409 22.409 80400 4 6
22.419 23.168 23.168 80830 45
23.178 23.923 23.923 81210 44
23.933 24.682 24.682 81570 43
24.692 25.437 25.437 81880 42
25.447 26.184 26.184 82170 41
26.194 26.950 26.950 82410 40
26.960 27.693 27.693 82630 39
27.703 28.457 28.457 82800 38
28.467 29.210 29.210 82940 37
29.220 29.968 29.968 83050 36
29.978 30.337 30.337 83190 35
30.347 31.092 31.092 83240 34
31.102 31.475 31.475 83290 33
31.485 32.235 31.611 83290 32
32.245 32.604 32.245 83240 31
32.614 33.361 32.614 83190 30
33.371 33.736 33.371 83040 29
33.746 34.107 33.746 82760 28
34.117 34.875 34.117 82660 27
34.885 35.242 34.885 82380 26
35.252 35.620 35.252 81770 25
35.630 35.994 35.630 81280 24
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5.5 The Equilibrium Analysis

In this Section, we analyze the equilibrium behavior in  the industry under price—or 

Bertrand competition. (See however, the end of this section for a discussion of the case 

of Cournot competition.) Once again, we start w ith the case where all firms experience 

only multiplicative seasonalities and their fixed and variable order cost parameters 

remain constant throughout the planning horizon. (The best response problem of Sec­

tion 5.3 thus applies; we append the assumption of constant variable order cost rates 

to simplify the exposition below.) Thus, let K l = K{ = ... = K\- and c l = c{ = ... = c lT 

fo r all i  = 1 ,... , N.

Substituting the expression (5.8) for the cost function Cl (p ) as well as the identity 

d \{p ) -  p \5 l (p) in the profit function (5.4), we obtain:

nH p) = Bi (T )p i5i (p) -  m in \n K l + Bi (T )c iSi (p) + 5i (p)F}l (T ) \  (5.27)
n=  1,... ,T 1 J

where F^(t) = minimum total holding costs in periods {1 ,... , t} for firm  i, assuming 

the firm ’s demand stream is given by seasonality factors ... , ^  j  and assuming 

exactly n  order are placed in the first t periods, t = 1 ,. . . ,  T, n  = 1 ,... , t, i  = 1 ,... , N.

t
Fln {t) = F ln (t) -  c l X  P\ (5-28)

5=1

It is difficult to guarantee the existence of a Nash equilibrium on the basis of the exact 

characterization of the cost function Cl (p) as a piecewise linear function of the desea- 

sonalized demand volume 5l (p). Note, for example, from (5.10) -  (5.12), that firm  i ’s
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best response price fails to vary continuously w ith the competitor’s prices, even tough 

the points of discontinuity form a set of measure zero. However, as substantiated in 

Section 5.3, the values 316 closely approximated by a function of the from

(5.26). Substituting (5.26) into (5.27) and treating the number of order periods n  as a 

continuous variable, we obtain the (approximate) profit functions

f t l {p) = Bl (T)5l {p )(p l -  cl ) -  min
n> 0

= Bi (T)Si (p )(p i -  j  -  n() -  2^K % i^ 8 i (p)

= b Ht )

n

5i (p) (p i - n i - c 1) -  ( yl^Hp) -, 1 = 1 ,... ,1V (5.29)

where the first equality follows from simple calculus as in  the well-known Economic 

Order Quantity (EOQ) model.

The approximation (5.26) for the values | f4 ( T ) |  thus permits us to represent the 

cost function as one consisting of an explicit linear term in  6l (p) plus a term propor­

tional to the square root of this deseasonalized demand value. A price competition 

game in  which each firm  selects a price from a closed interval and w ith profit functions 

of the type (5.29) has been analyzed by C a c h o n  and H a r k e r  (2002) and Be r n s t e i n  and 

F e d e r g r u e n  (2003). The former confine themselves to the case where the number of 

firms N = 2. Without guaranteeing that an equilibrium exists, they establish a sufficient 

condition under which the existence of multiple equilibria can be excluded. B e r n s t e i n  

and F e d e r g r u e n  (2003) show that the existence of an equilibrium can, indeed, not 

b e  g u a r a n t e e d  u n d e r  c o m p le t e ly  a r b i t r a r y  p a r a m e t e r s .  T h e y  id e n t i f y ,  h o w e v e r ,  f o r  th e  

case of linear deseasonalized demand functions, see (5.2), a simple sufficient condition
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for the existence of an equilibrium, which relates the demand elasticity of a firm  with 

respect to its own price to the firm ’s inventory-to-sales ratio. More specifically, assume 

the demand functions j<5‘ (p )} satisfy (5.2).

Let eu = 5 gpf * the absolute value of the demand elasticity o f firm  i

w ith respect to its own price.

IN V 1 = 2y[s i (p )K i %i = firm  i ’s optimal inventory and fixed order costs over the 

course of the planning horizon, under the price vector p.

REV1 = Bl (T )p l5 l (p) = firm  i ’s total gross revenue over the course of the planning 

horizon, under the price vector p.

Theorem 1 in  B e r n s t e i n  and F e d e r g r u e n  (2003) shows that a Nash equilibrium 

exists in  the price competition model i f  the following condition (C) is satisfied:

REV '
(C) , i  = l , . . . , N  (5.30)

The ratio REV1/IN V 1 is closely related to the (annual) sales-to-inventory ratio, one 

of Wall Street’s most frequently monitored company measures. Be r n s t e i n  and F e d e r ­

g r u e n  (2003) argue that the ratio REV1/IN V 1 is, in  fact, at least 2.5 times the sales-to- 

inventory ratio. Moreover, analyzing data by D u n  and Br a d s t r e e t  (2001), the authors 

show for a sample of 10 consumer product lines that the average lower quartile of the 

sales-to-inventory ratio varies between 2.8 and 6.7 for the 10 product lines. As a conse­

quence, the right hand side of the inequality in  (C) varies between 56 and 134, while the 

absolute value of the price elasticity varies between one and five, see e.g. T e l l i s  (1988). 

Thus, condition (C) is very comfortably satisfied for virtually all production lines and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

148

industries.

While condition (C) guarantees that a Nash equilibrium exists, two important ques­

tions remain: (a) Is the Nash equilibrium unique or can multiple equilibria arise, mak­

ing it  hard to predict which of the possible equilibria the industry w ill adopt and (b) 

How can the equilibrium (or equilibria) be computed efficiently? Theorem 2 in B e r n ­

s t e i n  and F e d e r g r u e n  (2003) shows that under a slight tightening of condition (C), a 

unique equilibrium can indeed be guaranteed and that this unique equilibrium can be 

efficiently computed as the lim it point of the following simple (iterative) tatonnement 

scheme:

Tatonnement scheme: Starting w ith an arbitrary price vector o), in  the k-th itera­

tion of the scheme, each firm  determines the price p jk) which solves the best response 

problem (5.6), assuming all competing firms’ prices are set according to their value in 

the price vector p(k-i)- Consider condition (C2):

REV‘
( C 2 )  e i i ^ 4 l N V i  ( 5 ‘ 3 1 )

As reviewed above, condition (C2), which is somewhat tighter than (C), is still very 

comfortably satisfied for virtually all product lines. We conclude:

Theorem 5.1 Assume the deseasonalized demand functions {<5l (p)J are linear, i.e. they 

satisfy (5.2). Assume only multiplicative seasonalities apply (a\ = 0), while a ll fixed and 

variable cost parameters are constant throughout the course o f the planning horizon, 

i.e. K \ = ... = K \ = K l and c\ = ... = Cj = cl . Consider the price competition game 

under the (approximate) profit functions tr '(p ) .
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(a) Under condition (C), the price competition game has a Nash equilibrium

(b) Under condition (C2), the price competition game has a unique equilibrium p*. 

The tatonnement scheme converges to p * from  any starting point p°.

Proof: Immediate from Theorem 1 and 2 in Be r n s te in  and Fed e r g r u e n  (2003).

The tatonnement scheme consists of repeated solutions of best response problems. 

The availability of efficient procedures to solve the best response problems (see Section 

5.3) is therefore of critical importance.

It is d ifficult to establish a similarly intuitive sufficient condition to guarantee the 

existence of an equilibrium in the general model, w ith nonlinear deseasonalized de­

mand functions or time-dependent order cost parameters. However, thanks to the 

availability of the best response algorithms in  Section 5.3 and 5.4, the tatonnement 

scheme can be applied effectively to the fu lly  general model. When convergent, its lim it 

point is, of course, a Nash equilibrium. If convergent to the same lim it point, regard­

less of its starting point p(o>, the equilibrium is in fact unique. Thus, the tatonnement 

scheme provides an algorithmic mechanism to establish the existence of a Nash equilib­

rium  in  any given instance of the general model. Indeed, we have applied the scheme to 

a large variety of problem instances of the general model and have found hat a unique 

equilibrium exists in  the vast majority of cases.

We conclude this Section w ith a brief discussion o f the case where the firms engage 

in  Cournot (quantity competition) as opposed to Bertrand (price competition). Con­

sider, again, the conditions stated in Theorem 1, and assume the approximate profit 

functions 7Tl (-) are used. Under (5.5), the system of (deseasonalized) demand func­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

150

tions can be inverted resulting in the inverse demand functions:

p l = a 1 -  b l5 l -  , i  = l , . . . , N  where b \  d j > 0 (5.32)
H i

It follows from Theorem 3 in  B e r n s t e i n  and F e d e r g r u e n  (2003) that an equilibrium 

exists under condition (C) and that this equilibrium is unique under (C2) and the con­

dition

bi > £ 9 )  , i  = 1 ,... ,N, (5.33)
H i

the direct counterpart of (5.5) for inverse demand functions. Thus, the same condi­

tion (C) guarantees an equilibrium both under price- and under quantity competition. 

Moreover, an analogous pair of conditions guarantees that the equilibrium is unique. 

However, in  contrast to the case of price competition, it  is no longer possible to ensure 

that the tatonnement scheme converges to an equilibrium, even when the existence of 

a unique equilibrium can be guaranteed.

5.6 Numerical Examples

In this Section, we report on a numerical study conducted to investigate the effect on 

the equilibrium behavior of seasonality patterns and economies of scale resulting from 

fixed setup costs.

Table 5.2 displays the equilibrium in our base example (Example 5.2) under each 

of the six seasonality patterns (I)-(VT) and four combinations of setup cost values: (a)
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K\ = 500; (b) K * = 1000; (c) K\ = 4000 and (d) K\ = 5400. Each of the cells in the table 

corresponds w ith one of the 24 problem instances. Whenever a unique equilibrium  

exists, we display, sequentially, the equilibrium prices (p *), volumes(5*), pro fit levels 

i n * )  and the number of order periods (n *) for each firm. (If no equilibrium exists, or 

in  case multiple equilibria arise, the cell is left empty.)

In our example, firms 2 and 3 have identical characteristics. Firm 1 has a larger 

intercept as well as a significantly higher ‘total price sensitivity’ defined by bi = bi -  

ILj+i ©} > 0, see (5.5). (The total price sensitivity measures the marginal decline in  sales 

volume due to a universal price increase in  the industry; note b\ = 8 and & 2  = bj, = 1.) 

The larger total price sensitivity for firm  1 induces it  to adopt a lower price than his 

competitors, in each of the 24 problem instances considered, the lower direct price 

sensitivity 10 = d&/ pr  = b1 < b2 = b3 = 12 not withstanding.

While the differences in  the price equilibria are relatively small, they often have 

very significant impacts on equilibrium volumes and in particular equilibrium profits. 

For example, when K\ = 4000, firm  l ’s profit is nearly 25% larger under the cyclic 

seasonality pattern (VI) than under constant demands (I). When K\ = 5400 firm  1 more 

than doubles its profit when moving from the constant demand pattern (I) to a pattern 

w ith a holiday season at the beginning (IV). The profit increases for firm  2 and 3, when 

moving from (I) to (IV), are in  absolute terms, approximately equal that experienced by 

firm  1, even though in relative terms they amount to an increase of approximately 16%.

It is hard to predict which seasonality pattern results in higher equilibrium prices: 

fo r K} = 500, the prices under the constant pattern (I) are lower than those under the 

cyclic pattern (VI) but the opposite is true for K\ = 4000. Note, also, that the impact
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of a cost increase on the equilibrium prices may vary rather significantly depending 

on which of the seasonality patterns prevails. Under (I), equilibrium prices increase by 

$0.30 fo r firm  1 and $0.20 for firms 2 and 3, while the price increases under (VI) are 

$0.99 for firm  1 and $0.62 for firms 2 and 3. The order pattern, in  general, and the 

number of order periods, in  particular, vary greatly by firm  and by seasonality pattern, 

see for example the case where K\ = 1000.
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Table 5.2: Equilibria under six seasonality patterns and four setup cost values
(I) (ID (in) (IV) (V) (VI)

P* 30.79 32.91 21.91 30.94 33.04 33.04 30.94 33.03 33.03 31.28 32.95 32.95 31.28 32.95 32.95 31.10 33.11 33.11

K = 500 6* 157.91 214.96 214.96 156.59 214.87 214.87 156.67 214.88 214.88 153.12 215.38 215.38 153.12 215.38 215.38 155.22 214.87 214.87

7T* 107.66 180.94 180.94 108.91 182.76 182.76 109.05 182.78 182.78 110.61 181.75 181.75 110.61 181.75 181.75 111.60 185.26 185.26

n* 54 54 54 47 50 50 47 50 50 32 54 54 32 54 54 3 7 4 5  45

P* 32.05 33.00 33.00 31.60 33.61 33.61 31.63 33.57 33.57 31.36 33.78 33.78 31.40 33.78 33.78 31.24 33.44 33.44

K -  1000 «5* 145.50 216.04 216.04 131.20 214.39 214.39 150.88 214.48 214.48 153 96 213.80 213.80 153.52 213.84 213.84 154.51 214.35 214.35

TT* 87.33 156.04 156.04 89.45 165.83 165.83 89.93 166.00 1C6.C0 95.29 173.69 173.69 96.27 173.76 173.76 93.91 169.76 169.76

n* 27 54 54 34 41 41 33 41 41 32 32 32 31 32 32 35 37 37

p* 34.86 37.49 37.49 34.28 36.64 36.64 34.40 36.77 36.77 33.72 36.13 36.13 33.87 36.13 36.13

K = 4000 S * 126.38 209.88 209.88 130.48 211.00 211.00 129.51 210.87 210.87 135.03 211.46 211.46 133.58 211.61 211.61

71* 30.25 126.22 126.22 31.93 120.35 120.35 34.58 124.09 124.09 42.46 129.22 129.22 40 .36  129.50 129.50

n * 14 18 18 15 20 20 14 19 19 14 18 18 14 18 18

P* 35.23 37.52 37.52 35.13 38.12 38.12 35.29 38.28 38.28 34.89 37.72 37.72 34.86 37.68 37.68

K = 5600 6* 122.70 210.20 210.20 124.99 208.88 208.88 123.71 208.72 208.72 126.53 209.45 209.45 126.71 209.51 209.51

TT* 8.50 98.03 98.03 11.56 106.74 106.74 15.44 112.04 112.04 24.86 119.02 119.02 25.10 119.12 119.12

n* 13 18 18 13 16 16 12 15 15 11 14 14 10 17 17
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When K\ = 4000, a unique equilibrium continues to exist under all seasonality 

patterns except for (IV). Here, there are at least two equilibria p*  = [34.03; 36.28; 36.40] 

and p f  = [34.03; 36.40; 36.28]. (These equilibria are both interior points of the feasible 

region.) The tatonnement scheme may, in  this case, converge to either one of the 

two equilibria or it  cycles through the points p*  = [34.02; 36.40; 36.40] and p'£ = 

[34.04; 36.28; 36.28].

When K\ -  5400, an equilibrium fails to exist for pattern (VI): the tatonnement 

scheme never converges, irrespective of the starting point. Instead, the scheme cycles 

between the two price points p*  = [35.24; 36.54; 36.54] and p f  = [35.25; 36.60; 36.60],

We conclude that the seasonality patterns of the demand functions (as well as the 

cost parameters) may result in significant differences in the equilibria. Sometimes, 

the seasonality pattern determines whether a unique equilibrium, no equilibrium or 

multiple equilibria prevail. The latter two cases arise, of course, in settings where 

conditions (C) and (C2) are violated.

We conclude this Section with a set of six problem instances w ith additive rather 

than multiplicative seasonality factors for the demand function, i.e. = 1. The six 

instances are obtained from the base case in Example 5.2 (where all a lt = 0), merely by 

varying the terms. The seasonality patterns are the direct analog o f (I)-(VI) in  the 

case of multiplicative seasonalities.

For each pattern, we obtain the «f-terms from the ^[-factors for the same pattern, 

employing the transformation a\ = 100(/?j -  1). (Note that ^  £ t= i cx\ = 0 Vi.) Table 

5.3 displays the equilibrium prices, demand values, profits and number of setups for 

the 6 instances. As in the case of multiplicative seasonalities, we note that the differ­
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ences in the equilibrium prices are modest. At the same time, major differences in  the 

number of setup periods may arise, translating into equilibrium profit differences of 

up to 8.4%. The differences become even larger when the setup cost parameters K} are 

increased, see Table 5.2. As in  the case of multiple seasonalities, all firms may be bet­

ter off under seasonally varying demands or cost parameters, once again contradicting 

common folklore.
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Table 5.3: Equilibria under six rx-patterns

(1) (II) (III) (IV) (V) (VI)

p*

K  = 1000 5*

TT*

n *

32.05 33.00 33.00 

78.57 116.66 116.66 

87.33 156.04 156.04 

27 54 54

31.91 33.87 33.87 

80.29 115.65 115.65 

88.77 165.83 165.83 

32 43  43

31.95 3 3 .87  33.87 

80.04 115.67 115.67 

89.10  166.06 166.06 

31 43 43

32.04 34.75 34.75 

80.51 114.77 114.77 

94.63  177.07 177.07 

31 32 32

32.04  34.75 34.75 

80.51 114.77 114.77 

94.63  177 .07  177.07 

31 32 32

32.08 33.72 33.72 

79.21 115 .90  115.90 

89.56 165.68 165.68 

36 45 45
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